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SCOPE OF FLUID MECHANICS 

Knowledge and understanding of the basic principles and concepts of fluid mechanics are essential to 

analyze any system in which a fluid is the working medium. The design of almost all means 

transportation requires application of fluid Mechanics. Air craft for subsonic and supersonic flight, 

ground effect machines, hovercraft, vertical takeoff and landing requiring minimum runway length, 

surface ships, submarines and automobiles requires the knowledge of fluid mechanics. In recent years 

automobile industries have given more importance to aerodynamic design. The collapse of the Tacoma 

Narrows Bridge in 1940 is evidence of the possible consequences of neglecting the basic principles fluid 

mechanics. 

The design of all types of fluid machinery including pumps, fans, blowers, compressors and 

turbines clearly require knowledge of basic principles fluid mechanics. Other applications include 

design of lubricating systems, heating and ventilating of private homes, large office buildings, shopping 

malls and design of pipeline systems. 

The list of applications of principles of fluid mechanics may include many more. The main point 

is that the fluid mechanics subject is not studied for pure academic interest but requires considerable 

academic interest. 



 
 

Definition of a fluid:- 

CHAPTER -1 

 

Fluid mechanics deals with the behaviour of fluids at rest and in motion. It is logical to begin with a 
definition of fluid. Fluid is a substance that deforms continuously under the application of shear 
(tangential) stress no matter how small the stress may be. Alternatively, we may define a fluid as a 
substance that cannot sustain a shear stress when at rest. 

 
 
 

A solid deforms when a shear stress is applied , but its deformation doesn’t continue to 

increase with time. 

Fig 1.1(a) shows and 1.1(b) shows the deformation the deformation of solid and fluid under the action 
of constant shear force. The deformation in case of solid doesn’t increase with time i.e 
t1  t 2 .......  tn    . 

From solid mechanics we know that the deformation is directly proportional to applied shear stress ( τ = 
F/A ),provided the elastic limit of the material is not exceeded. 

To repeat the experiment with a fluid between the plates , lets us use a dye marker to outline a fluid 
element. When the shear force ‘F’ , is applied to the upper plate , the deformation of the fluid element 
continues to increase as long as the force is applied , i.e t 2  t1 . 

Fluid as a continuum :- 

Fluids are composed of molecules. However, in most engineering applications we are interested in 

average or macroscopic effect of many molecules. It is the macroscopic effect that we ordinarily 

perceive and measure. We thus treat a fluid as infinitely divisible substance , i.e continuum and do not 

concern ourselves with the behaviour of individual molecules. 

The concept of continuum is the basis of classical fluid mechanics .The continuum assumption is 

valid under normal conditions .However it breaks down whenever the mean free path of the molecules 

becomes the same order of magnitude as the smallest significant characteristic dimension of the problem 



.In the problems such as rarefied gas flow (as encountered in flights into the upper reaches of the 

atmosphere ) , we must abandon the concept of a continuum in favour of microscopic and statistical 

point of view. 

As a consequence of the continuum assumption, each fluid property is assumed to have a definite value 

at every point in the space .Thus fluid properties such as density , temperature , velocity and so on are 

considered to be continuous functions of position and time . 

Consider a region of fluid as shown in fig 1.5. We are interested in determining the density at 
 
 
 
 
 
 

the 

point 

‘c’, 

whose 
 
 
 
 
 
 

coordinates are 𝑥0, 𝑦0 and 𝑧0 . Thus the mean density V would be given by ρ= . In general, this will 

not be the value of the density at point ‘c’ . To determine the density at point ‘c’, we must select a small 

volume , 𝑉, surrounding point ‘c’ and determine the ratio and allowing the volume to shrink 

continuously in size. 

Assuming that volume is initially relatively larger (but still small compared with volume , V) a 

typical plot might appear as shown in fig 1.5 (b) . When becomes so small that it contains only a 

small number of molecules , it becomes impossible to fix a definite value for ; the value will vary 

erratically as molecules cross into and out of the volume. Thus there is a lower limiting value of 𝑉, 

designated 𝑉ꞌ . The density at a point is thus defined as 

ρ = ꞌ 

Since point ‘c’ was arbitrary , the density at any other point in the fluid could be determined in a like 

manner. If density determinations were made simultaneously at an infinite number of points in the fluid , 



we would obtain an expression for the density distribution as function of the space co-ordinates , ρ = 

ρ(x,y,z,) , at the given instant. 

Clearly , the density at a point may vary with time as a result of work done on or by the fluid and /or 

heat transfer to or from the fluid. Thus , the complete representation(the field representation) is given by 

:ρ = ρ(x,y,z,t) 

Velocity field: 

In a manner similar to the density , the velocity field ; assuming fluid to be a continuum , can be 

expressed as :𝑉̅→ =  𝑉→̅  (x,y,z,t) 

The velocity vector can be written in terms of its three scalar components , i.e 

𝑉̅→ =uı^+v𝑗^+w𝑘̂ 

In general ; u = u(x,y,z,t) , v=v(x,y,z,t) and w=w(x,y,z,t) 

If properties at any point in the flow field do not change with time , the flow is termed as steady. 

Mathematically , the definition of steady flow is =0 ; where η represents any fluid property. 

Thus for steady flow is = 0 or ρ = ρ(x,y,z) 
 

=0 or 𝑉̅→ =  𝑉̅→(x,y,z) 

Thus in steady flow ,any property may vary from point to point in the field , but all properties , but all 

properties remain constant with time at every point. 

One, two and three dimensional flows : 

A flow is classified as one two or three dimensional based on the number of space coordinates required 

to specify the velocity field. Although most flow fields are inherently three dimensional, analysis based 

on fewer dimensions are meaningful. 

Consider for example the steady flow through a long pipe of constant cross section (refer 

Fig1.6a). Far from the entrance of the pipe the velocity distribution for a laminar flow can be described 

as: = ]. The velocity field is a function of r only. It is independent of r and  .Thus the 

flow is one dimensional. 



 
 

Fig1.6a and Fig1.6b 

An example of a two-dimensional flow is illustrated in Fig1.6b.The velocity distribution is 

depicted for a flow between two diverging straight walls that are infinitely large in z direction. Since the 

channel is considered to be infinitely large in z the direction, the velocity will be identical in all planes 

perpendicular to z axis. Thus the velocity field will be only function of x and y and the flow can be 

classified as two dimensional. Fig 1.7 

 
For the purpose of analysis often it is convenient 

to introduce the notion of uniform flow at a given 

cross-section. Under this situation the two 

dimensional flow of Fig 1.6 b is modelled as one 

dimensional flow as shown in Fig1.7, i.e. velocity 

field is a function of x only. However, 

convenience alone does not justify the assumption such as a uniform flow assumption at a cross section, 

unless the results of acceptable accuracy are obtained. 

Stress Field: 

Surface and body forces are encountered in the study of continuum fluid mechanics. Surface forces act 

on the boundaries of a medium through direct contact. Forces developed without physical contact and 

distributed over the volume of the fluid, are termed as body forces . Gravitational and electromagnetic 

forces are examples of body forces . 

Consider an area , that passes through ‘c’ .Consider a force 

acting on an area     through point    ‘c’ .The normal stress 

and shear stress 𝑛 are then defined as :𝜎𝑛 = 

 



= ;Subscript ‘n’ on the stress is included as a reminder that the stresses are associated 
 

with the surface , through ‘c’ , having an outward normal in 𝑛̂ direction .For any other surface 

through ‘c’ the values of stresses will be different . 

Consider a rectangular co-ordinate system , where stresses act on planes whose normal are in x,y and z 

directions. 

 
 

Fig 1.9 
 

 
Fig 1.9 shows the forces components acting on the area . 

The stress components are defined as ; 

= 
 

= 
 

= 
 

A double subscript notation is used to label the stresses. The first subscript indicates the plane on which 

the stress acts and the second subscript represents the direction in which the stress acts, i.e 

represents a stress that acts on x- plane (i.e the normal to the plane is in x direction ) and acts in ‘y’ 

direction . 



Consideration of area element 𝐴𝑦 would lead to the definition of the stresses , 𝜎𝑦𝑥 , 𝜎𝑦𝑦 and 𝜎𝑦𝑧 . Use 

of an area element 𝐴𝑧 would similarly lead to the definition 𝜎𝑧𝑥 , 𝜎𝑧𝑦 and 𝜎𝑧𝑧 . 

An infinite number of planes can be passed through point ‘c’ , resulting in an infinite number of stresses 

associated with planes through that point. Fortunately , the state of stress at a point can be completely 

described by specifying the stresses acting on three mutually perpendicular planes through the point. 

Thus , the stress at a point is specified by nine components and given by : 
 

= 
 
 
 

Fig 1.10 
 
 

Viscosity: 

In the absence of a shear stress , there will be no deformation. Fluids may be broadly classified 
according to the relation between applied shear stress and rate of deformation. 

Consider the behaviour of a fluid element between the two infinite plates shown in fig 1.11 . The upper 
plate moves at constant velocity , u , under the influence of a constant applied force ,𝐹𝑥 . 

The shear stress , , applied to the fluid element is given by : 
 

= = 



Where , 𝐴𝑦 is the area of contact of a fluid element with the plate. During the interval t , the fluid 
element is deformed from position MNOP to the position 𝑀'𝑁𝑂𝑃' . The rate of deformation of the fluid 
element is given by: 

Deformation rate = lim 
            = 𝑑

𝑡0 𝑡 𝑑𝑡 
 

 

 
To calculate the shear stress, 

l = u t 

 
𝜎𝑦
𝑥 

, it is desirable to express 
𝑑


𝑑𝑡 

 
in terms of readily measurable quantity. 

 

Also for small angles , l = y 

Equating these two expressions , we have 

 = 𝑢 

𝑡 𝑦 

Taking limit of both sides of the expression , we obtain ; 
𝑑 

= 𝑑𝑢 

𝑑𝑡 𝑑𝑦 
 

Thus the fluid element when subjected to shear stress , 𝜎𝑦𝑥 , experiences a deformation rate , given by 
𝑑𝑢 . 
𝑑𝑦 

#Fluids in which shear stress is directly proportional to the rate of deformation are “Newtonian fluids “ . 

# The term Non –Newtonian is used to classify in which shear stress is not directly proportional to the 
rate of deformation . 

Newtonian Fluids : 

Most common fluids i.e Air , water and gasoline are Newtonian fluids under normal conditions. 
Mathematically for Newtonian fluid we can write : 

𝑑𝑢 

𝜎𝑦𝑥 𝖺 
𝑑𝑦

 



𝑦𝑥 

If one considers the deformation of two different Newtonian fluids , say Glycerin and water ,one 
recognizes that they will deform at different rates under the action of same applied stress. Glycerin 
exhibits much more resistance to deformation than water . Thus we say it is more viscous. The constant 
of proportionality is called , ‘μ’ . 

𝑑𝑢 
Thus , 
𝜎𝑦𝑥 

=μ 
𝑑𝑦 

Non-Newtonian Fluids : 

𝜎 =k ( 
𝑑𝑢

)
𝑛

 
 

 
, ‘n’ is flow behaviour index and ‘k’ is consistency index . 

𝑦𝑥 𝑑𝑦  

𝑑𝑢 
To ensure that 𝜎 has the same sign as that of ( ) , we can express 

𝑑𝑦 

𝜎 =k 
𝑑𝑢
 

 

𝑛−1 (
𝑑𝑢

) = η 
𝑑𝑢

) 
 

  

𝑦𝑥 │( )│ 
𝑑𝑦  

𝑑𝑢 

𝑑𝑦 

𝑛−1 

( 
𝑑𝑦 

Where ‘η’ = k│( 
𝑑𝑦 

)│ is referred as apparent viscosity. 
 

 
 
 

# The fluids in which the apparent viscosity decreases with increasing deformation rate (n<1) are called 

pseudoplastic (shear thining) fluids . Most Non –Newtonian fluids fall into this category . Examples 

include : polymer solutions , colloidal suspensions and paper pulp in water. 

# If the apparent viscosity increases with increasing deformation rate (n>1) the fluid is termed as 

dilatant( shear thickening). Suspension of starch and sand are examples of dilatant fluids . 

# A fluid that behaves as a solid until a minimum yield stress is exceeded and subsequently exhibits a 

linear relation between stress and deformation rate . 



𝜎𝑦𝑥 = 
𝜎𝑦i𝑒𝑙𝑑 

𝑑𝑢 
+ μ( ) 

𝑑𝑦 

Examples are : Clay suspension , drilling muds & tooth paste. 

Causes of Viscosity: 

The causes of viscosity in a fluid are possibly due to two factors (i) intermolecular force of cohesion (ii) 

molecular momentum exchange. 

#Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the 

adjacent layer to move with an equal speed and thus produces the effect of viscosity. 

#The individual molecules of a fluid are continuously in motion and this motion makes a possible 

process of momentum exchange between layers. Such migration of molecules causes forces of 

acceleration or deceleration to drag the layers and produces the effect of viscosity. 

Although the process of molecular momentum exchange occurs in liquids, the intermolecular cohesion 

is the dominant cause of viscosity in a liquid. Since cohesion decreases with increase in temperature, the 

liquid viscosity decreases with increase in temperature. 

In gases the intermolecular cohesive forces are very small and the viscosity is dictated by molecular 

momentum exchange. As the random molecular motion increases wit a rise in temperature, the viscosity 

also increases accordingly. 

Example-1An infinite plate is moved over a second plate on a layer of liquid. For small gap width ,d, a 

linear velocity distribution is assumed in the liquid . Determine : 

(i) The shear stress on the upper and lower plate . 

(ii) The directions of each shear stresses calculated in (i). 
 

 

Soln:𝑟 
 
𝑦𝑥 

=μ𝑑𝑢 

𝑑𝑦 

Since the velocity profile is linear ;we have 
 

𝑟𝑦𝑥 

 

=μ ( −0) = μ 
𝑑−𝑜 𝑑 



𝑑 
Hence; 𝑟𝑦𝑥 𝑦=𝑑    = 𝑟𝑦𝑥 𝑦=0 

= μ = constant 

Example-2 

An oil film of viscosity μ & thickness h<<R lies between a solid wall and a circular disc as shown in fig 
E .1.2. The disc is rotated steadily at an angular velocity Ω. Noting that both the velocity and shear stress 
vary with radius ‘r’ , derive an expression for the torque ‘T’ required to rotate the disk. 

Soln: 
 
 
 
 
 
 
 
 

Assumption : linear velocity profile, 
laminar flow.u = Ω r; 𝑟 =μ𝑑𝑢 = μ 𝗇𝑟; dF= τ dA 

 

𝑦𝑥 𝑑𝑦 ℎ 

𝗇𝑟 
dF= μ ( 

ℎ 

 

)2Πr dr 
 

𝑅 

 
 

2𝑀𝜇𝗇 𝑅    3 𝑀𝜇𝗇𝑅4
 

T= ∫ 𝑑𝑇= ∫0 𝑟 𝑑𝐹 = ℎ 
∫0 

𝑟 dr = 

Vapor Pressure: 
 

Vapor pressure of a liquid is the partial pressure of the vapour in contacts with the saturated liquid at a 

given temperature. When the pressure in a liquid is reduced to less than vapour pressure, the liquid may 

change phase suddenly and flash. 

Surface Tension: 

Surface tension is the apparent interfacial tensile stress (force per unit length of interface) that acts 

whenever a liquid has a density interface, such as when the liquid contacts a gas, vapour, second liquid, 

or a solid. The liquid surface appears to act as stretched elastic membrane as seen by nearly spherical 

shapes of small droplets and soap bubbles. With some care it may be possible to place a needle on the 

water surface and find it supported by surface tension. 

A force balance on a segment of interface shows that there is a pressure jump across the 

imagined elastic membrane whenever the interface is curved. For a water droplet in air, the pressure in 

the water is higher than ambient; the same is true for a gas bubble in liquid. Surface tension also leads to 

2ℎ 



the phenomenon of capillary waves on a liquid surface and capillary rise or depression as shown in the 

figure below. 

 
 
 
 

Basic 
flow 

 
 
 
 
 
 
 

Analysis Techniques: 

There are three basic ways to attack a fluid flow problem. They are equally important for a student 
learning the subject. 

(1) Control–volume or integral analysis 

(2)Infinitesimal system or differential analysis 

(3) Experimental or dimensional analysis. 

In all cases the flow must satisfy three basic laws with a thermodynamic state relation and associated 
boundary condition. 

1. Conservation of mass (Continuity) 

2. Balance of momentum (Newton’s 2nd law) 

3. First law of thermodynamics (Conservation of energy) 

4. A state relation like ρ=ρ (P, T) 

5. Appropriate boundary conditions at solid surface, interfaces, inlets and exits. 

Flow patterns: 

Fluid mechanics is a highly visual subject. The pattern of flow can be visualized in a dozen of different 
ways . Four basic type of patterns are : 

1. Stream line- A streamline is a line drawn in the flow field so that it is tangent to the line velocity field 
at a given instant. 



∫ ∫ 

2. Path line- Actual path traversed by a fluid particle. 

3. Streak line- Streak line is the locus of the particles that have earlier passed through a prescribed point. 

4. Time line – Time line is a set of fluid particles that form a line at a given instant . 

For stream lines : d𝑟̅ ×𝑉̅  = 0 

i j 𝑘 
|𝑑𝑥 𝑑𝑦 𝑑𝑧| = 0 

𝑢 𝑣 𝑤 

 ı^( w dy-v dz ) - 𝑗^(w dx –u dz ) + ̂𝑘(v dx – u dy ) = 0 
 𝑤 𝑑𝑦=v dz ; w dx = u dz & v dx = u dy. 

So ; 
𝑑𝑥 

= 
𝑑𝑦 

= 
𝑑𝑧 

𝑢 𝑣 w 

Ex: A velocity field given by 𝑉̅→ = A x ı^ – A y 𝑗^ . x, y are in meters . units of  velocity in m/s. 

A = 0.3 𝑠−1 

(a) obtain an equation for stream line in the x,y plane. 
(b) Stream line plot through (2,8,0) 
(c) Velocity of a particle at a point (2,8,0) 
(d) Position at t = 6s of particle located at (2,8,0) 
(e) Velocity of particle at position found in (d) 
(f) Equation of path line of particle located at (2,8,0) at t=0 

Soln: 

(a) For stream lines ; 
𝑑𝑥 

= 
𝑑𝑦

 
𝑢 𝑣 

 𝑑𝑥 
= 

𝑑𝑦 

𝐴𝑥 −𝐴𝑦 

∫ 
𝑑𝑥 = - ∫ 

𝑑𝑦 

 𝑥 𝑦 

 ln 𝑥 = - ln 𝑦 + C 
 ln 𝑥𝑦 = C 
 xy =C 

(b) Stream lime plot through ( 𝑥0 , 𝑦0 ,0) 

 𝑥0𝑦0 = C 
 𝐶 = 16 
 xy = 16 

 

(𝑐) 𝑉 = 0.6 ı^– 0.6 𝑗^ 

(d) u = Ax , 𝑑𝑥 = Ax , 
𝑥  𝑑𝑥 

= A 
𝑡 
𝑑𝑡 

𝑑𝑡 

 ln( 
𝑥 

) = At  ,  𝑥  
= 

𝑥0 𝑥0 

𝑥0   𝑥 0 
 

𝑒𝐴𝑡 

v = - Ay , 
𝑑𝑦 

= -Ay , ∫
𝑦 𝑑𝑦 

=- A∫
𝑡 
𝑑𝑡 

𝑑𝑡 𝑦0   𝑦 0 



 = 

 ln( 
𝑦 

) = -At ,  𝑦 
= 

𝑦0 𝑦0 

At t = 6s ; x=2 𝑒0.3×6 = 12.1 m 

𝑒−𝐴𝑡 

 

; y=8 𝑒−0.3×6 = 1.32 m 

(e) 𝑉→̅   = 0.3 ×12.1 ı^  - 0.3 × 1.32 𝑗^   =   3.63 ı^–   0.396 𝑗^ 

(f) To determine the equation of the path line , we use the parametric equation : 

x = 𝑥0 𝑒𝐴𝑡 and y = 𝑦0 𝑒−𝐴𝑡 and eliminate ‘t’ 

 xy = 𝑥0𝑦0 

Remarks : 

(a) The equation of stream line through (𝑥0, 𝑦0) and equation of the path line traced out by particle 
passing through (𝑥0𝑦0)are same as the flow is steady. 

(b) In following a particle ( Lagrangian method of description ) , both the coordinates of the particle 
(x,y) and the component ( 𝑢𝑝 & 𝑣𝑝) are functions of time. 

Example -2: 

A flow is described by velocity field, 𝑉̅  =ay ı^ + bt 𝑗^ , where a = 1 𝑠−1  , b= 0.5 m/𝑠2  . At t=2s , what are 
the coordinates of the particle that passed through (1,2) at t=0 ? At t=3s , what are the coordinates of the 
particle that passed through the point (1,2) at t= 2s . 

Plot the path line and streak line through point (1,2) and compare with the stream lines through the 
same point ( 1,2) at instant , t = 0,1,2 & 3 s . 

Soln: 

Path line and streak line are based on parametric equations for a particle . 
 

v = 𝑑𝑦 

𝑑𝑡 
= bt , so,   dy = bt dt 

 y - 𝑦 = 𝑏 (𝑡2− 𝑡 2) 
0 2 0 

& u = 𝑑𝑥 = ay = a [ 𝑦 + 𝑏 (𝑡2− 𝑡 2) ] 
  

𝑑𝑡 0 2 0 
𝑥 𝑡 

∫ 𝑑𝑥 ∫ {𝑎[ 𝑦 + 𝑏 (𝑡2− 𝑡 2)]}dt 
𝑥0 𝑡0 0 2 0 

 (𝑥 − 𝑥 ) = a 𝑦 (t- 𝑡 ) + 𝑏 ( 𝑡 3 − 𝑡  2t )𝑡 
0 0 0 2 3 0 𝑡0 

 𝑥 = 𝑥 + a 𝑦 (t - 𝑡 ) + 𝑎𝑏 { (𝑡 3−𝑡0 3) - 𝑡 2(t- 𝑡 ) } 
 

0 0 0 2 3 0 0 

(a) For 𝑡0 = 0 and (𝑥0 , 𝑦0) = (1,2) , at t = 2s , we have 
 y-2 = 𝑏(4) 

2 

 y =3 m 
 x = 1 + 2 (2-0) + 0.5 [8 – 0] = 5.67 m 

2 3 



𝑡0(s) t X(m) Y(m) 

0 0 1 2 

0 1 3.08 2.25 

0 2 5.67 3.00 

0 3 9.25 4.25 

(b)For 𝑡0 = 2s and (𝑥0 , 𝑦0) = ( 1,2) . Thus at t = 3s 

We have , y -2 = 𝑏(𝑡2− 𝑡 2) = 0.5 (9-4) = 1.25 
2 0 2 

 y = 3.25 m 

& x = 1+ 2 (3-2) + 0.5 { (3
3−23

) - 22(3-2) } 
2 3 

 

 x = 1 + 2 (3-2) + 0.5 { (27−8 
) - 4(1 ) }= 3.58 m 

2 3 
 

(c) The streak line at any given ‘t’ may be obtained by varying ‘𝑡0’ . 

# part (a) : path line of particle located at (𝑥0 , 𝑦0) at 𝑡0= 0 s. 

#part (b): path lines of a particle located at (𝑥0 , 𝑦0) at 𝑡0 = 2s 
 
 
 

𝑡0(s) t(s) X Y 
2 2 1 2 
2 3 3.58 3.25 
2 4 7.67 5.0 

 
#part (c) : 𝑑𝑥 = 𝑑𝑦   

𝑢 𝑣 

 dx = (
𝑎𝑦 

) dy 
𝑏𝑡 

 y dy = 𝑏𝑡 dx 
𝑎 

 𝑦2 = (2𝑏𝑡) x + c 
𝑎 

Thus , c = 𝑦 2 – (2𝑏𝑡) 𝑥 
0 𝑎 0 

For (𝑥0 , 𝑦0) = (1,2) , for different value of ‘t’ . 

For t =0 ; c = (2)2 = 4 
 

t = 1 ;c = 4 – ( 1 )1 = 3 
1 

 

t = 2 ;c = 4 – ( 2 )1 = 2 
1 



𝑡0(s) t(s) X(m) Y(m) 

0 3 9.25 4.25 

1 3 6.67 4.00 

2 3 3.58 3.25 

3 3 1.0 2.0 

t =3 ;c = 4 – ( 3 )1 = 1 
1 

 

t(s) 0 1 2 3 
C= 4 3 2 1 
X Y Y Y Y 
1 2 2 2 2 
2 2 2.24 2.45 2.65 
3 2 2.45 2.83 3.16 
4 2 2.65 3.16 3.61 

5 2 2.53 3.46 4.0 
6 2 3.0 3.74 4.36 
7 2 3.16 4.00 4.69 

 
 
 
 

# Streak line of particles that passed through point (𝑥0 , 𝑦0) at t = 3s. 
 



CHAPTER – 2 

FLUID STATICS 

In the previous chapter , we defined as well as demonstrated that fluid at rest cannot sustain shear stress , 
how small it may be. The same is true for fluids in “ rigid body” motion. Therefore, fluids either at rest 
or in “rigid body” motion are able to sustain only normal stresses. Analysis of hydrostatic cases is thus 
appreciably simpler than that for fluids undergoing angular deformation. 

Mere simplicity doesn’t justify our study of subject . Normal forces transmitted by fluids are important 
in many practical situations. Using the principles of hydrostatics we can compute forces on submerged 
objects, developed instruments for measuring pressure, forces developed by hydraulic systems in 
applications such as industrial press or automobile brakes. 

In a static fluid or in a fluid undergoing rigid-body motion, a fluid particle retains its identity for all time 
and fluid elements do not deform. Thus we shall apply Newton’s second law of motion to evaluate the 
forces acting on the particle. 

The basic equations of fluid statics : 

For a differential fluid element , the body force is  𝑑𝐹̅ ̅̅   = 𝑔̅  dm  =  𝑔̅ ρ d

(here , gravity is the only body force considered)where, 𝑔̅   is    the local gravity vector ,ρ is the density 

& d is the volume of the fluid element. In Cartesian coordinates, d= dx dy dz .In a static fluid no 

shear stress can be present. Thus the only surface force is the pressure force. Pressure is a scalar field, p 

= p(x,y,z) ; the pressure varies with position within the fluid. 
 
 

Pressure at the left face : 𝑃 = ( p - 6𝑝 𝑑𝑦) 
  

𝐿 6𝑦  2 



Pressure at the right face : 𝑃 = ( p + 6𝑝 𝑑𝑦) 
  

𝑅 6𝑦  2 

Pressure force at the left face :𝐹 = ( p - 6𝑝 𝑑𝑦)dx dz 𝑗 
𝐿 6𝑦 2 

Pressure force at the right face :𝐹 = ( p + 6𝑝 𝑑𝑦)dx dz (-𝑗^) 
  

𝑅 6𝑦 2 

 

Similarly writing for all the surfaces , we have 

d̅𝐹→ = ı^ (p - 6𝑝   𝑑𝑥)dy dz + (p + 6𝑝   𝑑𝑥)dy dz (-ı^) + ( p - 6𝑝   𝑑𝑦)dx dz 𝑗 
      

𝑠 6𝑥  2 6𝑥   2 6𝑦  2 

+ ( p + 6𝑝   𝑑𝑦)dx dz (-𝑗^) +  ( p + 6𝑝  𝑑𝑧)dx dy (𝑘̂) +( p +  6𝑝   𝑑𝑧)dx dy (-𝑘̂) 
6𝑦  2 6𝑧   2 6𝑧  2 

Collecting and concealing terms , we obtain : 

d̅𝐹→ = - (ı^ 
6𝑝  

+ 𝑗^ 
6𝑝  

+ 𝑘̂ 6𝑝  
) dx dy dz 

𝑠 6𝑥 6𝑦 6𝑧 

 

 d̅𝐹𝑠→ = - (∇p) dx dy dz 

Thus 

Net force acting on the body: 
 

 d𝐹→ = d̅𝐹𝑠→ + d̅𝐹 = ( - ∇p + ρ𝑔̅ ) dx dy dz 
 d𝐹→ = ( - ∇p + ρ𝑔̅ )d

or, in a per unit volume basis: 
 

d𝐹→ 
 

𝑑
= ( - ∇p + ρ𝑔̅ )  (2.1) 

 

For a fluid particle , Newton’s second law can  be expressed as : d𝐹→ = 𝑎̅ dm = 𝑎̅ ρ dv 
 

Or d𝐹→ 

d
= 𝑎̅ ρ (2.2) 

 

Comparing 2.1 & 2.2 , we have 
 

- ∇p + ρ𝑔̅ = 𝑎̅ ρ 
 

For a static fluid , 𝑎̅ = 0 ; Thus we obtain ;   - ∇p + ρ𝑔̅ =0 
 

The component equations are ; 

-6𝑝 + ρ𝑔 = 0 
6𝑥 𝑥 

-6𝑝 + ρ𝑔 = 0 
6𝑦 𝑦 

 
 
 
 
 

𝑔̅ = -g 𝑘̂ 

𝑔𝑥=0=𝑔𝑦 



∫ ∫

𝑃g𝑎𝑢g𝑒 

𝑃𝑎𝑏𝑠 

𝑃𝑎𝑡𝑚 

-6𝑝 + ρ𝑔 = 0 
6𝑧 𝑧 

Using the value of 𝑔𝑥 , 𝑔𝑦 & 𝑔𝑧we have 

6𝑝  
= 0 , 

6𝑝 = 0 &  
6𝑝  

= −𝜌𝑔   ; since P=P(Z) 
6𝑥 6𝑦 6𝑧 

 
We can write 𝑑𝑝 = −𝜌𝑔 

𝑑𝑧 
 

Restrictions: (i) Static fluid 
 

(ii) gravity is the only body force 
 

(iii) z axis is vertical upward 
 
 

P = 0 

#Pressure variation in a static fluid : 
 

𝑑𝑃 = -ρg = constant 
𝑑𝑧 

 
𝑃 

𝑑𝑃 
𝑃0 

= - ρg 
Z 

𝑑𝑍 
Z0 

 𝑃 − 𝑃0 = - ρg(Z-𝑍0) 

 𝑃 − 𝑃0 = - ρg(𝑍0 – Z) = ρgh 

Ex:2.1 A tube of small diameter is dipped into a liquid in an open container. Obtain an expression for 
the change in the liquid level within the tube caused by the surface tension. 

 
 
 
 
 
 
 
 
 
 
 
 

Soln: 



𝐹𝑧 = σ𝑀Dcos - ρg = 0 

Neglecting the volume of the liquid above h , we obtain 
 

 = 𝑀 𝐷2 h 
4 

 

Thus ; σ𝑀Dcos - ρg 𝑀 𝐷2 h = 0 
4 

 h = 4𝜎𝑐𝑜𝑠
𝜌g𝐷 

 

Multi Fluid Manometer: 

Ex2.2 Find the pressure at ‘A’. 
 
 

Soln:𝑃𝐴 + 𝜌𝑎g ×0.15 - 𝜌𝑚g×0.15 + 𝜌𝑎g ×0.15 - 𝜌wg×0.3 = 𝑃0 

 
 

 

 
 

#Inclined Tube manometer: 

Ex2.3 Given : Inclined–tube reservoir manometer . 

Find : Expression for ‘L’ in terms of P. 

#General expression for manometer sensitivity 

#parameter values that give maximum sensitivity 



2



 
Soln: 

 
Equating 
pressures on 
either side of 
Level -2 , we 

have; P = 𝜌𝑙 g 
(h+H) 

To eliminate ‘H’ 
, we recognise 
that the volume 

of manometer liquid remains constant i.e the volume displaced from the reservoir must be equal to the 
volume rise in the tube. 

Thus ; 𝑀 𝐷2𝐻 = 𝑀 𝑑2𝐿 
4 4 

 H = L(
𝑑
)2 

 P = 𝜌𝐷 g [Lsin + L 𝑑 2]= 𝜌 gL[ sin + 𝑑 2] 
𝑙 

 

Thus, L= 𝑃 
𝑑 

𝜌𝑙g[sin + (   )  ] 
𝐷 

(𝐷) 𝑙 (𝐷) 

 

To obtain an expression for sensitivity , express P in terms of an equivalent water column height , ℎ𝑒 

P= 𝜌wgℎ𝑒 

Combining equation 1 &2 , we have 
 

𝜌𝑙gL[ sin +(𝑑 )2] = 𝜌 gℎ𝑒 
𝐷 w 

Thus , S = 𝐿   = 1 2 
ℎ𝑒 

𝑑) 
𝑆𝐺[𝑠i𝑛    + ( ] 

𝐷 

Where , SG = 𝜌𝑒 
𝜌w 

 

The expression ‘S’ for sensitivity shows that to increase sensitivity SG , sin and 𝑑 should be made as 
𝐷 

small as possible. 
 

Hydrostatic Force on the plane surface which is inclined at an angle ‘’ to horizontal free 

surface: 

2 

1 



.

∫

𝑟̅* ×̅𝐹𝑅̅ ̅ = ∫ 𝑟̅ ×d𝐹̅ = - ∫ 𝑟̅ × p d𝐴̅ 

We wish to determine the resultant hydrostatic force on the plane surface which is inclined at angle ‘’ 

to the horizontal free surface. 

Since there can be no shear stresses in a static fluid , the hydrostatic force on any element of the surface 

must act normal to the surface .The pressure force acting on an element d𝐴̅ of the upper surface is given 

by d𝐹̅ = - p d𝐴̅ . 

 
 
 
 
 
 
 
 
 
 
 
 
 

The negative sign indicates that the pressure force acts against the surface i.e in the direction opposite 

to the area d𝐴̅ . ̅̅𝐹 ̅= ∫
.  

−𝑝𝑑𝐴̅ 
𝑅 𝐴 

If the free surface is at a pressure ( 𝑃0 = 𝑃𝑎𝑡𝑚), then , p = 𝑝0 + ρgh 
|̅𝐹 = ∫ (𝑝 + pgh)dA = 𝑝 𝐴+ ∫. 𝜌𝑔𝑦 𝑠i𝑛 𝑑𝐴 

𝑅 𝐴 0 0 𝐴 

 |̅𝐹̅̅| = 𝑝 𝐴 + ρg sin ∫ 𝑦. 𝑑𝐴 

But 
.
 

𝐴 

𝑅 0 𝐴 

𝑦𝑑𝐴 = 𝑦𝑐 dA 

Thus , |̅𝐹̅𝑅 = 𝑝0𝐴 + ρg𝑦𝑐A sin = (𝑝0 + ρg𝑦𝑐 sin)A 

Where ℎ𝑐 is the vertical distance between free surface and centroid of the area . 

# To evaluate the centre of pressure (c.p) or the point of application of the resultant force 

The point of application of the resultant force must be such that the moment of the resultant force about 

any axis is equal to the sum of the moments of the distributed force about the same axis. 

If 𝑟*̅   is the position vector of centre pressure from the arbitrary origin , then 
 

 

Referring to fig 2.3 , we can express 



∫ ∫ 

∫

∫ ∫

∫ ∫ 

𝑦   = 𝑦 + *  𝐼 𝑥𝑥̂  
𝑐 𝐴𝑦𝑐 

𝑟*̅ = ı^𝑥* + 𝑗^𝑦* 
 

𝑟̅ = xı̂ + y𝑗^  ; d𝐴̅ = - dA 𝑘̂ and 𝐹̅̅𝑅̅ = 𝐹𝑅𝑘̂ 

Substituting into equation , we obtain 

(ı^𝑥* + 𝑗^𝑦* )× 
𝐹𝑅 

𝑘̂ = ( xı̂  +  y𝑗^ ) × 𝑑𝐹̅ =  . ( xı̂  +  y𝑗^ )× p dA 𝑘̂ 
𝐴 

 

Evaluating the cross product , we get 

 𝑗^  𝑥*  𝐹𝑅+ ı̂ 𝑦*𝐹𝑅  = . ( − 𝑗^ x p + ı^ yp) dA 
𝐴 

 

Equating the components in each direction , 
 

𝑦*  𝐹𝑅    = .  𝑦𝑝𝑑𝐴 
𝐴 

and 𝑥*  𝐹𝑅    = .  𝑥𝑝𝑑𝐴 
𝐴 

#when the ambient (atmospheric) pressure , 𝑝0 , acts on both 

sides of the surface , then 𝑝0 makes no contribution to the net hydrostatic force on the surface and it may 

be dropped . If the free surface is at a different pressure from the ambient, then ‘ 𝑝0′ should be stated as 

gauge pressure , while calculating the 

net force . 
∫

.  
𝑝𝑦𝑑𝐴 ∫

. 
𝜌g𝑥2𝑠i𝑛 𝑑𝐴 

𝑦* = 𝐴 

𝐹𝑅 
= 𝐴 

𝜌g𝑦𝑐𝐴 𝑠i𝑛

 𝑦* = 𝜌g𝑠i𝑛 ∫ 𝑦2 𝑑𝐴 

𝜌g𝑦𝑐𝐴 𝑠i𝑛
 𝑦* = 𝐼𝑥𝑥 

 

𝐴𝑦𝑐 

 

But from parallel axis theorem , 𝐼𝑥𝑥 = 
 

Where  𝐼𝑥̂𝑥̂    is the second moment of the area about the centroid al   ‘𝑥̂’ axis . Thus 
 

Or , 𝑦* = ( ℎ𝑐 ) + 𝐼𝑥^𝑥^ 𝑠i𝑛
𝑠i𝑛 𝐴ℎ𝑐 

Similarly taking moment about ‘y’ axis ; 
 

𝑥* 𝐹𝑅 = ∫ 𝑥𝑝𝑑𝐴 

 𝑥* ρg sin 𝑦 A = 
. 
𝑥𝜌𝑔ℎ 𝑑𝐴 = ρgsin . 𝑥𝑦𝑑𝐴 

 
 
 
 

𝐼𝑥̂𝑥̂  + A 𝑦𝑐 
2

 

. 𝑐 𝐴 𝐴 
∫  𝑥𝑦𝑑𝐴 𝐼 

 𝑥* = 𝐴 = 
𝐴𝑦𝑐 

  𝑥𝑦 

𝐴𝑦𝑐 
 

From the parallel axis theorem , 𝐼𝑥𝑥 = 𝐼𝑥^𝑦^ + A𝑥𝑐𝑦𝑐 

 

Where 𝐼𝑥̂𝑦̂  is the area product of inertia w.r.t centroid al 𝑥̂𝑦  axis. 



𝑅 4 

So, 𝑥* = 𝑥 + 
𝐼𝑥̂𝑦̂   

𝐴𝑦𝑐 
 

For surface that is symmetric about ‘y’ axis , 𝑥* = 𝑥𝑐 and hence usually not asked to evaluate. 

Example Problem: 

Ex 2.4:Rectangular gate , hinged at ‘A’ , w=5m . Find the resultant force , ̅𝐹𝑅̅ ̅ , of the water and the air 

on the gate .The inclined surface shown , hinged along edge ‘A’ , is 5m wide . Determine the resultant 

force ,  ̅𝐹𝑅̅ ̅ , of the water and air on the inclined surface. 

 

Soln:- 
̅𝐹̅̅ 
= 

. 𝑝 𝑑𝐴̅ = − 8 𝜌g y sin30 w dy 𝑘̂ 

∫ ∫ 
4

 
𝑅 𝐴 2

 

̅̅̅𝐹= -𝜌gw  𝑘̂ [ 𝑦   ]8  = - 999×9.81×5  [64-16]𝑘̂ 


𝑅 2 2   4 4 

 ̅𝐹̅𝑅̅ = -588.01 KN 

Force acts in negative ‘z’ direction. 

To find the line of action : 

Taking moment about x axis through point ‘ O ’ on the free surface , we obtain : 

𝑦* 𝐹 = ∫
. 

𝑦 𝑝𝑑𝐴 = ∫
8 

𝑦 𝜌 𝑔 𝑠i𝑛30 𝑤 𝑑𝑦 
𝑅 𝐴 4 

 𝑦* 𝐹 = (𝜌gw) [𝑦3

]8 = 5×999×9.81 [ 83 - 43] 
2 3 6 

 𝑦* ×(588.01 ×103) = 3658.73×103 

 𝑦* = 6.22 m 

#To find 𝑥* ; we can take moment about y axis through point ‘o’. 



∫

. w     8 

𝐹𝑅 = ρ g ℎ𝑐 A = ρ g ( 2+2sin30) 
×4×5 

𝑦   = 𝑦 + = 6 + *  𝐼 𝑥̂𝑥̂ 
𝑐 𝐴𝑦𝑐 

w 𝑙  /12 

20×6 

3 

= 6.22m 

𝑥* = 𝑥 𝑐 + 
𝐼𝑥̂𝑦̂ 

𝐴𝑦𝑐 

𝐼𝑥̂𝑦̂ 

0 

= ∫  𝑥̂𝑦̂ 𝑑𝐴 = ∫2 
. 

w 𝑙 

𝐴 −w 
2   𝑥̂𝑦̂𝑑𝑥̂𝑑𝑦̂ = 

𝑙 
2 

− 
2 

Thus , 𝑥* = 𝑥𝑐 = 2.5 m 

𝑥*  𝐹𝑅    = ∫  𝑥 𝑝 𝑑𝐴 = ∫   ∫ 
 
𝑥 𝜌𝑦𝑔 𝑠i𝑛30 𝑑𝑥 𝑑𝑦 

𝐴 0 4 

 𝑥* 𝐹 = ∫
w 

𝑥 𝑑𝑥 ∫
8 

𝜌𝑔𝑦𝑠i𝑛30 𝑑𝑦 = w ∫
8 

𝜌𝑔𝑦 𝑠i𝑛30 . 𝑤𝑑𝑦 
 

𝑅 

 𝑥* 𝐹 
0 4 2  4 

= w 𝐹 
𝑅 2 𝑅 

 𝑥* = w = 2.5 m 
2 

 

Alternative way: By directly using equations: 
 

 
 

 

Concept of pressure prism: 
 

𝐹𝑅 = volume = 1 (ρgh)hb 
2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ex2.5: A pressurised tank 
contains oil (SG=0.9) and has a 



∫    

∫ 

∫     

square , 0.6 m by 0.6m plate bolted to its side as shown in fig . The pressure gage on the top of the tank 
reads 50kpa and the outside tank is at atmospheric pressure. Find the magnitude & location of the 
resultant force on the attached plate . 

Soln :𝐹1 = (𝑃𝑠 + ρgℎ1)×0.36 = 24.4 kN 

𝐹 =1ρg(ℎ -ℎ )×0.36 = 0.954kN 
2 2 2 1 

𝐹𝑅 = 𝐹1 + 𝐹2 = 25.4 kN 
 

If ‘𝐹𝑅 ‘ is the force acting at a distance 𝑦* for 

the bottom , we have ; 𝐹𝑅 𝑦* = 𝐹1 ×0.3 + 𝐹2 ×0.2 and 𝑦* = 0.296m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Soln: Basic equations : 

𝑑𝑝 = ρg ; |̅𝐹̅̅| = ∫ 𝑝 𝑑𝐴 ; 
 

𝑑ℎ 𝑅 

𝑀̅  =0;Taking moment about the hinge ‘B’ , we have 
 

𝐹𝐴R = ∫ 𝑦 𝑑𝐹 = ∫ 𝜌𝑔ℎ𝑦 𝑑𝐴 

 dA = r d dr ; 
 y= rsin ; h = H-y 
 𝐹𝐴 =1 ∫𝑀∫ 𝑅 𝑟 𝑠i𝑛 𝜌𝑔 (𝐻 − 𝑟𝑠i𝑛) r dr d

Ex-2.6 

𝑅    0 0    𝑅( 𝐻𝑟2 -𝑟3sin)dr d
  = 𝜌g 𝑀 

𝐴 𝑅 
∫

0 
∫

0 

= 𝜌g 
𝑀

[ 
𝐻𝑟3 

- 𝑟
4 

sin ]𝑅 sin d
 

𝑅 0 3 4 

=𝜌g  
𝑀

( 
𝐻𝑅3 

- 𝑅
4 

sin )sin d
𝑅 0 3 4 

=𝜌g 
[∫

𝑀 𝐻𝑅3    sin d - 
𝑀 𝑅4   

𝑠i𝑛2  d ] 
𝑅 0 3 0  4 

0 



∫ ∫ 

∫ ]

∫ ∫ 

)

Ex-2.7 :- Repeat the example problem 2.4 if the 
C.S area of the inclined surface is circular one , 
with radius R=2. 

Soln: Using integration; 

𝐹 𝑅 = ∫
. 
𝑑𝐹 = ∫

. 
𝜌𝑔ℎ𝑑𝐴 = 

𝐴 𝐴 
𝜌𝑔𝑦𝑠i𝑛 𝑑𝑟 𝑟𝑑

+y = 6m 

 y = 6 -  = 6 - rsin

𝐹 = ρgsin30 ∫ ∫ (6 − 𝑟𝑠i𝑛)𝑟 𝑑𝑟 𝑑
2𝑀  𝑅 

3

 

=𝜌g 𝐻𝑅
3 

[ −𝑐𝑜𝑠 ]𝑀 - 𝜌g 𝑅
4 

×1 [ 𝑀( 1 − 𝑐𝑜𝑠2)𝑑 ] 
𝑅 3 0 𝑅  4 2 0 

= - 𝜌g 𝐻𝑅
3 

[-1-1] - 𝜌g𝑅
3

[  - 𝑠i𝑛2 ]𝑀 
   

𝑅 3 8 2 0 

= 2𝜌g𝐻𝑅2 

- 𝜌g𝑅3 

[ Π ] 
3 8 

 

 𝐹 = ρg [ 2𝐻𝑅 2- 𝑀𝑅 3 ] 
𝐴 3 8 

 𝐹𝐴 = 366 kN . (Ans) 

𝑅 0 0 

= 𝜌g 
2𝑀  𝑅

(6𝑟 − 𝑟2𝑠i𝑛)𝑑𝑟 𝑑
2 0 0 

 
𝐹 = 𝜌g 2𝑀

[ (6 
𝑟 2 

− 
𝑟3 

   

𝑠i𝑛) 𝑅 d = 𝜌g ∫
2𝑀

(3𝑅2 − 
𝑅3 

𝑠i𝑛) d


𝑅 2 0 2 3 0 2 0 3 

= 𝜌g [ 3𝑅2  - 𝑅 (-cos) ]2𝑀 

2 3 0 

=𝜌g [12×2Π – 0] = 12ρgΠ = 369.458kN 
2 

 

Similarly for 𝑦*  we can write 

𝑦* . 𝐹 = ∫ 𝑦 𝑑𝐹 = 
2𝑀  𝑅

( 6 − 𝑟𝑆i𝑛)2 ρgsin dr r d
𝑅 0 0 

By using formula : 𝐹𝑅 = ρgℎ𝑐 A = ρg ( 2+2sin30) Π𝑅2 = 369.458kN 

( 44
) 

𝑦*  = 𝑦   +  𝐼𝑥̂𝑥̂     = 6 + 
𝑐 𝐴𝑦𝑐 

  64       ×1 
 

  

(
    44 6 

4 

∫



∫

𝑦* = 6.166m 

# Find 𝐼𝑥^𝑥  ̂for a circular C.S 

dA = dr rd

𝐼 = ∫ 𝑟2dA = 
2𝑀 

∫
𝑅 

𝑟3dr d
ẐẐ  
 

0 0 

𝑅4 

𝜋
 

 
 

Z^Z^ =   ×2 
4 

But , 𝐼𝑥^𝑥^ + 𝐼𝑦^𝑦^ = 𝐼Z^Z^ (perpendicular axis theorem) 
 

 2𝐼𝑥̂𝑥̂= 2𝑀𝑅4 

4 

 𝐼𝑥̂𝑥̂= 𝑀𝑅4 

4 
 

# Find 𝐼𝑥^𝑥^ for a semi-circle: 
𝑅 

𝑟 𝑠i𝑛 𝑟 𝑑𝑟 𝑑

𝑦𝑐 = ∫ 𝑦𝑑𝐴 = ∫0 ∫0 

∫ 𝑑𝐴 ( 𝑅2
 

 
𝑅3 

= 
( 

3 
)[− cos  ]0 

( 𝑅2 

2 
 

 

= 4𝑅 

3𝑀 
2 

4 

𝐼𝑥𝑥 
= 𝑀𝑅    ( half of the circle) 

8 
 

𝐼𝑥𝑥    = 𝐼𝑥̂𝑥̂  + A𝑦𝑐 
2

 
4 

 𝑀= 𝐼 + 𝑀𝑅2 

(4𝑅     
)2 

 

 

8 𝑥̂𝑥̂ 2 3𝑀 

 𝐼𝑥^𝑥  ̂= 0.1098 𝑅4
 

 

)

)



𝑅 𝑅𝑧 

∫

#Hydrostatic Force on a curved submerged surface: 
 

Consider the curved surface as shown in fig. The pressure force acting on the element of area , d𝐴̅ is 
given by 

d𝐹̅ =  −𝑝d𝐴̅ 

 𝐹̅ = - . pd𝐴̅ 
𝐴 

 

We can write; ̅𝐹𝑅̅̅ = ı^𝐹𝑅𝑥 + 𝑗^𝐹𝑅𝑦 + 𝑘̂𝐹𝑅𝑧 

Where, 𝐹𝑅𝑥, 𝐹𝑅𝑦&𝐹𝑅𝑧 are the components of 𝐹̅̅𝑅̅ in x, y & z directly respectively. 

𝐹 = 𝑘̂ ̅𝐹̅̅ = ∫ 𝑑𝐹̅ . 𝑘̂ = − ∫
.  

pd𝐴̅ 𝑘̂ = -∫
. 

𝑝𝑑𝐴 
𝐴 𝐴z 

𝑧 

Since the direction of the force component can be found by inspection, the use of vectors is not 
necessary. 

Thus we can write: 𝐹𝑅𝑙 
= ∫ 

𝐴𝑙 
𝑝𝑑𝐴𝑙 

 

Where d𝐴𝑙 is the projection of the element dA on a plane perpendicular to the ‘l’ direction. 
 

With the free surface at atmospheric pressure, the vertical component of the resultant hydrostatic force 
on a curved submerged surface is equal to the total weight of the liquid above the surface. 

𝐹𝑅𝑦 = ∫ 𝑝𝑑𝐴𝑦= ∫ 𝜌𝑔ℎ 𝑑𝐴𝑦 = ∫ 𝜌𝑔𝑑 = ρg

Ex:2.9:The gate shown is hinged at ‘O’ and has a constant width w = 5m . The equation of the surface is 

x= 
𝑦2

/𝑎 , where a= 4m . The depth of water to the right of the is D= 4m.Find the magnitude of the force 

, 𝐹𝑎 , applied as shown, required to maintain the gate in equilibrium if the weight of the gate is 
neglected. 

. 



0 0 0 

𝐴 0

 

Soln: Horizontal Component of force:- 

𝐹𝑅𝐻 = ρgℎ𝑐 (WD) = ρg(0.5) WD = 392kNℎ* 

(w𝐷3) 

h* = ℎ 
𝑐 

+ 𝐼𝑥^𝑥^ = 0.5D + 
𝐴𝑦𝑐 

   12   

𝐷 
 

 

 0.5D  
D

 
6 

 

=2.67m 

(w𝐷×
2 

) 

 

Vertical component: 

𝐷2 𝐷2 𝐷2 
   

𝐹𝑣 = ∫ 𝑎 𝑝𝑤𝑑𝑥 = ∫ 𝑎 𝜌𝑔ℎ𝑤𝑑𝑥 = ρgw∫ 𝑎 ℎ𝑑𝑥 

𝐷2 
1  1 

 𝐹𝑣 = 𝜌𝑔𝑤 ∫ 𝑎 (𝐷 − 𝑎2𝑥2)𝑑𝑥 , (where h+y =D, h = D-y = D-(ax)1/2 )
0 

1 

 𝐹 = 𝜌𝑔𝑤 [ Dx - 𝑎2  

 
3 

𝑥2 ] 
 

𝐷2 

𝑎 = (ρgw𝐷3 /3a) 
𝑣 3 0 

 𝐹𝑣= 261kN
 

 
𝑥* 𝐹 

 

. 

= ∫ 𝑥𝑝𝑑𝐴𝑦 
𝑦 

𝐷2 

= ∫ 𝑎 𝑥𝜌𝑔ℎ𝑤𝑑𝑥 

𝐷2 1  1 𝜌gw𝐷5 

 𝑥* 𝐹𝑣    =∫0 
𝑎   𝑥(𝐷 − 𝑎2𝑥2)𝑑𝑥 =

5 

 𝑥*= 1 (𝜌gw𝐷 )= 1.2m
𝐹𝑣      10 𝑎2

 

 

Summing moments about ‘O’ 
 

𝑀0 = 𝑥* 𝐹𝑣 + 𝐹𝐻(𝐷 − ℎ*) − 𝑙𝐹𝑎 =0 

 𝐹𝑎= 167kN.

 
 

10 𝑎2 

 

2 



g

Fluids in Rigid-Body Motion:- 

Basic equation: −𝑝 + 𝜌𝑔̅ = ρ𝑎̅ 

A fish tank 30cm×60cm×30cm is partially filled with water to be transported in an automobile. Find 
allowable depth of water for reasonable assurance that it will not spill during the trip. 

Soln: b=d=30cm= 0.3m 

−(
6𝑝 

ı^+6𝑝 𝑗^ + 
6𝑝 

𝑘̂) + ρ (ı̂  +𝑗^ 
𝑔 

+ 𝑘̂𝑔  )= ρ (̂𝑎 + 𝑎̂ + ı^𝑎  ) 

6𝑥 6𝑦 6𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

 

But; 𝑔𝑥 =0=𝑔𝑧 & 𝑎𝑥 =0=𝑎𝑧 

 

 6p = 0
6z 

 p = p(x,y)

− 
6p 

= 𝜌𝑎 
6X 𝑥 

− 
6p  

= 𝜌𝑔 (gy= -g) 𝑔=̅ 
6y 

-g𝑗^ 

 

Now we have to find an expression for p(x,y). 

dp = 6p 𝑑𝑥 + 
6p 

𝑑𝑦 
6X 6y 

But since the force surface is at constant pressure , we have to; 

0= 6p 𝑑𝑥 + 
6p 

𝑑𝑦 
6X 

 

 (𝑑𝑦)
𝑑𝑥 

6y 
 

 
𝑠𝑢𝑟ƒ𝑎𝑐𝑒 

 

= − 
𝑎𝑥 ( the free surface is a plane) 
g 

 tan = 
(𝑏/2) 

= 𝑏(𝑎𝑥)
𝑒 2 g 

 e = 𝑏(𝑎𝑥) = 0.15(𝑎𝑥) {as b=0.3m}
2  g g 

The minimum allowable value of ‘e’ = (0.3 - d )m 

Thus; 0.3 – d = 0.15 (𝑎𝑥) 
g 

 

Hence , 𝑑𝑚𝑎𝑥 = 0.3 – 0.15 (𝑎𝑥) 

#Liquid in rigid body motion with constant angular speed: 

A cylindrical container , partially filled with liquid , is rotated at a constant angular speed ,, about its 
axis. After a short time there is no relative motion; the liquid rotates with the cylinder as if the system 
were a rigid body .Determine the shape of the free surface. 



+ + 𝑒 

+ + 𝑒 

 
 

Soln: In cylindrical co-ordinate; 

p = 𝑒  6𝑝 𝑒 6𝑝 6𝑝 
 

𝑟 6𝑟 𝑟  6 𝑧 6𝑧 

& p + ρg = ρ𝑎̅ 

−(𝑒 6𝑝 𝑒 6𝑝 6𝑝) + ρ(𝑒 𝑔 + 𝑒 𝑔 + 𝑒 𝑔 ) = ρ(𝑒 𝑎   + 𝑒 𝑎 + 𝑒 𝑎 ) 
𝑟  6𝑟 𝑟  6 𝑧  6𝑧 𝑟    𝑟     𝑧     𝑧 𝑟    𝑟     𝑧    𝑧 

For the given problem ; 𝑔𝑟 = 𝑔 = 0 & 𝑔𝑧 = −𝑔 

and 𝑎 = 𝑎𝑧 = 0 𝑎𝑛𝑑 𝑎𝑟 = −2𝑟 

The component equations are: 

6𝑝 = 𝜌𝑟r ; 6𝑝=0 and 6𝑝 = ρg 
   

6𝑟 6 6𝑧 

Hence , p(r,z) only 
 

dp = 6𝑝 |𝑧 dr + 6𝑝 | 𝑟 dz 
6𝑟 6𝑧 

 

Taking (𝑟1, 𝑧1) as reference point , where the pressure is 𝑝1 and the arbitrary point (r,z) where the 
pressure is p, we can obtain the pressure difference as ; 

∫
𝑝 

𝑑𝑝 = ∫
𝑟 6𝑝 

𝑑𝑟 + ∫ 
6𝑝 

dz 
𝑝1 𝑟1 6𝑟 6𝑧 

 p𝑝 = ρ
2 

(𝑟2 − 𝑟 2)  ρg(z-𝑧 )
1 2 1 1 

If we take the reference point at the free surface on the cylinder axis , then; 
 

𝑝1=𝑝𝑎𝑡𝑚 ; 𝑟1 =0 and 𝑧1 = ℎ1 

p 𝑝 = ρ
2 

𝑟2  ρg(zℎ ) 
𝑎𝑡𝑚 2 1 

Since the free surface is a surface of constant pressure (p= 𝑝𝑎𝑡𝑚) , the equation of the free surface is 
given by : 



2

0 = ρ
2 

𝑟2  ρg(zℎ ) 
 

2 1 
 

2     
2 2

z = ℎ   + 𝑟   = ℎ   + (𝑟)   
1 2g 1 2g 

Volume of the liquid remain constant . Hence  = Π𝑅2ℎ0 ( without rotation) 

With rotation : 

 =   𝑅     
𝑧 2𝜋r (ℎ +  𝑟2) r.dr 

∫0 ∫0 
1 2g 

𝑅2+ 𝜔
2𝑅4

] 
  ✯= 𝜋[ ℎ1

𝑎𝑛𝑑 ℎ1 

 
= ℎ0 

4g 

− 
𝜔2𝑅2 

 

4g 

Finally: z = ℎ    (𝑟)2 

[ 1 𝑟 2] 
0 2g 

− ( ) 
2 𝑅 

 

Note that this expression is valid only for ℎ1>0 . Hence the maximum value of  is given by 
 

𝑚𝑎𝑥 = [2gℎ0]1/2     

. 
𝑅 

{ (R)2= (ℎ ℎ  ) ×4g and 𝜔2 = 1 (ℎ ℎ  ) ×4g 
0 1 𝑅2 0 1 

For ,𝑚𝑎𝑥 ; ℎ1 ≅ 0 } 
 
 
 
 
 
 

Buoyancy: 

When a stationary body is completely submerged in a fluid or partially immersed in a fluid, the resultant 
fluid force acting on the body is called the ‘Buoyancy’ force. Consider a solid body of arbitrary shape 
completely submerged in a homogeneous liquid. 



.

d𝐹̅1  =p̅𝑑̅̅𝐴̅ 

d𝐹𝑉1 = (𝑝𝑎𝑡𝑚 + 𝑝1)d𝐴𝑧 = (𝑝𝑎𝑡𝑚 + 𝜌𝑔ℎ1)d𝐴𝑧 

d𝐹𝑉2 = (𝑝𝑎𝑡𝑚 + 𝑝2)d𝐴𝑧 = (𝑝𝑎𝑡𝑚 + 𝜌𝑔ℎ2)d𝐴𝑧 

The buoyant force (the net force acting vertically upward) acting on the elemental prism is 
 
 
 
 
 
 
 
 
 
 
 
 

 
d𝐹𝐵= (d𝐹𝑉2 − d𝐹𝑉1)= ρg(ℎ2-ℎ1)d𝐴Z = ρgd 

Where, d =volume of the prism 

Hence, the buoyant force 𝐹𝐵 on the entire submerged body is obtained as : 

𝐹𝐵 = ∫ pgd , i.e 𝐹𝐵 = ρg

Consider a body of arbitrary shape, having a volume  , is immersed in a fluid. We enclose the body in 
a parallelepiped and draw a free body diagram of the parallelepiped with the body removed as shown in 
fig. The forces𝐹1, 𝐹2, 𝐹3  &𝐹4  are simply the forces acting on the parallelepiped, 𝑤ƒ  is the weight of the 
fluid volume (dotted region); 𝐹𝐵 is the force the body is exerting on the fluid. 

 
 

Alternate approach:- 

The forces on vertical surfaces are equal and opposite in direction and cancel, 

i.e , 𝐹3 − 𝐹4 = 0. 

𝐹1  + 𝐹𝐵  + 𝑤ƒ  = 𝐹2 or 𝐹𝐵= 𝐹2  − 𝐹1  − 𝑤ƒ 

Also; 𝐹1  =  𝜌ƒgℎ1A   , 𝐹2  =  𝜌ƒgℎ2A   and 𝑤ƒ  = 𝜌ƒg[A(ℎ2  − ℎ1)-] 

 𝐹𝐵  =  𝜌ƒgℎ2A   - 𝜌ƒgℎ1A   - 𝜌ƒg[A(ℎ2  − ℎ1)-] 
 𝐹𝐵  = 𝜌ƒg , where  is volume of the body 





The direction of the buoyant force, which is the force of the fluid on the body, will be opposite to that of ‘𝐹𝐵’ 

shown in fig (FBD of fluid). Therefore, the buoyant force has a magnitude equal to the weight of the fluid 

displaced by the body and is directed vertically upward. The line of action of the buoyant force can be 

determined by summing moments of the forces w.r.t some convenient axis. Summing the moments 

about an axis perpendicular to paper through point’A’ we have: 

 
 
 

 
 
 
 
 
 
 

𝐹𝐵𝑥𝐵  = 𝐹2𝑥1  − 𝐹1𝑥1  − Wƒ 𝑥2 

Substituting the forces; we have 

𝑥𝐵 =𝑇𝑥1 − (𝑇 − )𝑥2 

Where 𝑇=A(ℎ2 − ℎ1). The right hand side is the first moment of the displaced volume  and is equal 

to the centroid of the volume .Similarly it can be shown that the ‘Z’ co-ordinate of buoyant force 

coincides with ‘Z’ co-ordinate of the centroid. 

𝑥𝐵 =𝑇𝑥1−(𝑇−)𝑥2 

 
 
 
 

Stability:- 



Another interesting and important problem associated with submerged as well as floating body is 
concerned with the stability of the bodies. 

 
 
 
 
 
 
 
 
 

When a body is submerged , the 
equilibrium requires that the weight of the body acting through its C.G should be collinear with the 
buoyancy force .However in general, if the body is not homogeneous in distribution of mass over the 
entire volume, the location of centre of gravity ‘G’ don’t coincide with the centre of volume i.e centre of 
buoyancy, ‘B’ .Depending upon the relative location of G & B , a floating or submerged body attains 
different states of equilibrium , namely (i) Stable equilibrium (ii) Unstable equilibrium (iii) Neutral 
equilibrium. 

 

Stability of submerged Bodies 
 

#Stability problem is more complicated for floating bodies, since as the body rotates the location of 
centre of Buoyancy (centroid of displaced volume) may change. 

GM=BM – BG , where Metacentric Height 



If GM>0 (M is above G) Stable equilibrium 

GM=0 (M coincides with G )Neutral Equilibrium 

GM<0 (M is below G) Unstable equilibrium 

 
 
 
 
 

# Theoritical Determination of Metacentric Height: 

Before Displacement 

𝑥𝐵 = ∫ 𝑥𝑑 = ∫ 𝑥(𝑧𝑑𝐴) (1) 

After Displacement, depth of elemental volume immersed is (z+xtan) and the new centre of Buoyancy 
𝑥𝐵

 can be expressed as : 

𝑥𝐵
  = ∫ 𝑥(𝑧 + 𝑥 𝑡𝑎𝑛)dA (2) 

Subtracting eq.1 from eq.2 , we have 

(𝑥𝐵
 − 𝑥𝐵) = ∫ 𝑥2 tan dA = tan ∫ 𝑥2dA 

But ∫ 𝑥2 dA = 𝐼𝑦𝑦 

Also, for small 
angular 
displacement ; 
=tan

𝑥𝐵
 − 𝑥𝐵= BM 

tan (as 𝑥𝐵
 - 

𝑥𝐵 = BM  ) 

Since ,  BM 
tan = tan 𝐼𝑦𝑦 

 BM =
 𝐼𝑦𝑦

 


#Notice that 
𝐼𝑦𝑦 i𝑠 𝑡ℎ𝑒 𝑀. 𝐼 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑙

 
 
 
 

 
 GM+BG= 

𝐼𝑦𝑦 
#Notice that  is the immersed volume 



2

 GM = 
𝐼𝑦𝑦 

- BG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig:Theoritical Determination of Metacentric Height: 

#Floating Bodies Containing Liquid:- 

If a floating body carrying liquid with free surface undergoes an angular displacement, the liquid will 
move to keep the free surface horizontal. Thus not only the centre of buoyancy moves , but also the 
centre of gravity ‘G’ moves , in the direction of the movement of ‘B’. 

Thus , the stability of the body is reduced. For this reason, liquid which has to be carried in a ship is put 
into a number of separate compartments so as to minimize its movement within the ship. 

#Period of oscillation: 

From previous discussion we know that restoring couple to bring back the body to its original 
equilibrium position is : WGM sin

Since the torque is equal to mass moment of inertia ; we can write 
2

WGM sin = - 𝐼 (𝑑   ), where 𝐼  mass M.I of the body about its of 

rotation. 
𝑀    𝑑𝑡2 𝑀 

If ‘’ is small, sin =  , and equation can be written as, 𝑑 + 𝖶𝐺.𝑀 = 0 
𝑑𝑡2 𝐼𝑀 

(3) 

Eqn (3) represents an SHM. 



= 2
The time period, T = 2𝑀 2𝑀 1 

   = 2Π ( 𝐼𝑀    )
1

 

w (W.𝘎𝑀)2 

𝐼𝑀 

𝖶.𝐺𝑀 

Here time period is the time taken for a complete oscillation from one side to other and back again. The 
oscillation of the body results in a flow of the liquid around it and this flow has been neglected here. 

Ex-1 

A rectangular barge of width b and a submerged depth of H has its centre of gravity at its waterline. Find 

the metacentric height in terms of 𝑏 & hence show that for stable equilibrium of the barge 𝑏 ≥ √6 . 
𝐻 𝐻 

Soln: 

Given that OG = H 
 

 
Also from geometry 

OB = 𝐻 , BG = OG-OB = H- 𝐻 = 𝐻 
2 2 2 

3 

BM= 𝐼  = 𝐿𝐵 

 12×𝐿𝑏𝐻 

immersed volume) 
2 

BM= 𝑏 
12𝐻 

( Notice that ,  is the 

2 

GM=BM-BG= 𝑏 − 
𝐻 = 𝐻 {

1 
(

𝑏
)2 − 1} 

12𝐻 2 2  6  𝐻 
 

For stable equilibrium of the barge; MG≥ 0 

𝐻 
{

1 (
𝑏
)

2 
− 1} ≥ 0 

2  6  𝐻 

 

 (𝑏) ≥ √6 proved. 
𝐻 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER – 3 

INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION 



(𝜌 w   
)𝑥 𝑦 

(𝜌 𝑣   
)𝑥 𝑧 

Differential analysis of fluid motion: 

Integral equations are useful when we are mattered on the gross behaviour of a flow field and its effect 
on various devices .However the integral approach doesn’t enable us to obtain detailed point by point 
knowledge of flow field. 

To obtain this detailed knowledge, we must apply the equations of fluid motion in differential form. 
 

Conservation of mass/continuity equation: 

The assumption that a fluid could be treated as a continuous distribution of matter – led directly to a 
field representation of fluid properties. The property fields are defined by continuous functions of the 
space coordinates and time. The density and velocity fields are related by conservation of mass. 

Continuity equation in rectangular co-ordinate system:- 
 

Let us consider a differential control volume of size x, y and z. 

Rate of change of mass inside the control volume = mass flux in – mass flux out (1) 

Mass fluxes: 

At left face: ρ u y z 

At right face: ρ u y z + 6(𝜌 𝑢 𝑦 𝑧)x 
6𝑥 

At bottom face: ρ v x z 

At top face: ρ v x z + 6 y 
6𝑦 

 

At back face: ρ w x y + 6 z 
6𝑧 

Applying equation (1): 
 

6(𝜌𝑥 𝑦 ∆𝑧) =  6(𝜌𝑢) 𝑥 𝑦 ∆𝑧  6(𝜌𝑣) 𝑥 𝑦 ∆𝑧  6(𝜌w) 𝑥 𝑦 ∆𝑧
 

6𝑡 6𝑥 6𝑦 6𝑧 

 

=> 
6𝜌 + 6(𝜌𝑢) 

+ 
6(𝜌𝑣) 

+ 
6(𝜌w) = 0 

6𝑡 6𝑥 6𝑦 6𝑧 
 

=> 
6𝜌  

+   · (𝜌𝑢̅→ ) = 0 (2) 
 

6𝑡 
 

To find the expression for an incompressible flow: 
 

6𝜌 + 𝜌 · 𝑢̅→ +  
6𝑡 

· ❑𝜌 = 0 

=> ( 6𝜌 + 𝑢 
6𝑡 

· ❑𝜌 )+ ρ· 𝑢̅→ = 0 



❑* * 

=> 
𝐷𝜌  

+ ρ · 𝑢̅→ =0 (3) 
 

𝐷𝑡 
 

Let us define; 𝑢̅→*  = 𝑢̅→     ;  𝑥 *  =   𝑥i 

𝑢r𝑒f 
i L 

. 𝑢̅→ = 
𝑢r𝑒f    (❑*. 𝑢*  ) [Since ❑ · 𝑢̅ = 6𝑢i  = 

𝑢r𝑒f  6𝑢i
*  

] 
𝐿 

𝑢𝑟𝑒ƒ 1 𝐷𝜌 
=> ( . 𝑢 ) = − 

  

𝐿 𝜌 𝐷𝑡 

6𝑥i 𝐿  6𝑥i* 

=> (❑*. 𝑢* ) = − 
1

 

(
ur𝑒f) 

𝐿 

· 
1 𝐷𝜌 

𝜌 𝐷𝑡 

 
(4) 

Eqn (4) may be approximated as (∇*. 𝑢*) = 0 
 

If [    1 · 
1 𝐷𝜌 ] « 1 (5) 

 

(
ur𝑒f) 

𝐿 

𝜌 𝐷𝑡 

The velocity field is approximately solenoidal if condition (5) is satisfied. 
 

For incompressible flow, ρ = constant is a wrong statement.(unfortunately such statements appear in 
standard books). 

For example: Sea water or stratified air where density varies from layer to layer but the flow is 
essentially incompressible as the density of the particles along its path line don’t change. 

 

𝐷𝜌 
 

 

𝐷𝑡 
= 0 , doesn’t necessarily mean that ρ = constant 

 

Hence, for incompressible flow; 
 

· 𝑢̅→ =0, doesn’t matter whether the flow is steady or unsteady. 

# If ρ = constant then the flow is incompressible, but the converse is not true, i.e. Incompressible flow, 
the density may or may not be constant. 

MOMENTUM EQUATION: 
 

A dynamic equation describing fluid motion may be obtained by applying Newton’s 2nd law to a 
particle. 

Newton’s 2nd law for a finite system is given by: 

𝐹→  =  
𝑑𝑃̅→

) (1) 
𝑑𝑡   system 

where the linear momentum ‘P’ is given by: 
 

𝑃̅→𝑠𝑦𝑠𝑡𝑒𝑚  = ∫𝑚𝑎𝑠𝑠
→̅̅𝑉̅  𝑑𝑚 (2) 

Then, for an infinitesimal system of mass ‘dm’, Newton’s 2nd law can be written as: 



d𝐹→ = 𝑑𝑚  ( 𝑑𝑉→̅  ) (3) 
𝑑𝑡 

 
̅→ 

The total derivative 𝑑𝑉 
𝑑𝑡 

 
in equation (3) can be expressed as: 

 

u   
6̅̅̅̅𝑉→̅  
+ v

 ̅̅ ̅̅̅̅̅→ 
  +w 

̅̅̅̅𝑉6̅→ 
+ 

̅6̅̅̅𝑉̅→ 

6𝑥 

 

Hence; 

6𝑦 6𝑧 6𝑡 

 

d𝐹→  = 𝑑𝑚  [𝑢  
̅6̅̅̅𝑉̅→

 

6𝑥 

 

+ 𝑣 
̅̅̅6̅̅̅𝑉̅→ 

6𝑦 

 

+ 𝑤 
̅6̅̅̅𝑉̅→ 

6𝑧 

 

+  
̅6̅̅̅𝑉̅→ 

6𝑡 

 

] (4) 
 

Now  the  force d𝐹→ acting on the  fluid element  can be expressed as sum of the surface  forces      ( both 
Normal forces and tangential forces) and body forces (includes gravity field, electric field or magnetic 
fields) . 

 
 

 
To obtain the surface forces in x- direction we must sum the forces in x direction. Thus, 

𝑑𝐹 =  (𝜎 + 
6𝜎𝑥𝑥 

𝑑𝑥) 𝑑𝑦 𝑑𝑧  −  𝜎 𝑑𝑦 𝑑𝑧   + (𝜎 + 
6𝜎𝑦𝑥 

) 𝑑𝑥 𝑑𝑧  −  𝜎 𝑑𝑥   𝑑𝑧   + 𝜎( + 6𝜎z𝑥 

𝑠𝑥 𝑥𝑥 6𝑥 𝑥𝑥 𝑦𝑥 6𝑦 𝑦𝑥 𝑧𝑥 6𝑧 

) dx dy - 𝜎𝑧𝑥 dx dy 
 

On simplifying , we obtain ; 

6𝑉 



+ 𝑦𝑥 

= 𝜇 ( + ) 

d𝐹 
 

𝑠
𝑥 

= (6𝜎𝑥𝑥 

6𝑥 
+ 

6𝜎𝑦𝑥 

6𝑦 
+ 

6𝜎z𝑥) dx dy dz 
6𝑧 

 
 
 

6𝜎z𝑥 

d𝐹 =d𝐹 + d𝐹 = 𝜌g    + 6𝜎𝑥𝑥 + 
6𝜎𝑦𝑥     + ) dx dy dz   (5)  

𝑥 𝑠𝑥 𝑏𝑥 𝑥 (  
6𝑥 6𝑦 6𝑧 

 

Similar expression for the force components in y & z direction are: 
 

d𝐹𝑦 = 𝜌g𝑦 
6𝜎𝑥𝑦 

+( 
6𝑥 

+ 
6𝜎𝑦𝑦 

6𝑦 
+ 

6𝜎z𝑦 
) dx dy dz   (6)  

6𝑧 
 

d𝐹𝑥= 
𝜌g𝑧 

+ (6𝜎𝑥z 

6𝑥 
+ 

6𝜎𝑦z 

6𝑦 
+ 

6𝜎zz 

6𝑧 
) dx dy dz   (7)  

 

Now writing the differential form of equation of motion: 
 

(𝜌g 
 

6𝜎
6𝜎𝑥𝑥 + + 

6𝜎z𝑥) = 𝜌 ( 6𝑢 + u 6𝑢 +v 6𝑢 + w 6𝑢 ) (8) 
    

 

𝑥 6𝑥 6𝑦 6𝑧 6𝑡 6𝑦 6𝑦 6𝑧 

(𝜌g   + 
6𝜎𝑥𝑦 + 

6𝜎𝑦𝑦  + 
6𝜎z𝑦) = 𝜌 ( 6𝑣 + u 6𝑣 + v 6𝑣  + w 6𝑣 ) (9) 

𝑦 6𝑥 6𝑦 6𝑧 6𝑡 6𝑥 6𝑦 6𝑧 

(𝜌g  + 6𝜎𝑥z + 
6𝜎𝑦z  + 6𝜎zz) = 𝜌  (6w + u 6w + v 6w + w 6w ) (10) 

𝑧 6𝑥 6𝑦 6𝑧 6𝑡 6𝑥 6𝑦 6𝑧 

Newtonian fluid :- Navier-stokes equation: 
 

The stresses may be expressed in terms of velocity gradients & fluid properties in rectangular co- 
ordinates as follows : 

𝜎 = 𝜎 = 𝜇 ( 6𝑣 + 6𝑢 ) 
𝑥𝑦 𝑦𝑥 6𝑥 6𝑦 

𝜎 = 𝜎 6w 6𝑣 
𝑦𝑧 𝑧𝑦 6𝑦 6𝑧 

 

𝜎 = 𝜎 = 𝜇 ( 6𝑢 + 6w ) 
𝑧𝑥 𝑥𝑧 6𝑧 6𝑥 

𝜎 = -P - 2  𝜇 ❑ · 𝑉̅→ + 2 𝜇  
6𝑢

 
  

𝑥𝑥 
 
 

𝜎𝑦𝑦 

 
𝜎𝑧𝑧 

3 

 
= -P - 2 

3 

 
= -P - 2 

3 

1 

6𝑥 
 

𝜇 ❑ · 𝑉̅→ + 2 𝜇  
6𝑣

 

6𝑦 
 

𝜇 ❑ · 𝑉̅→ + 2 𝜇  
6w

 
6𝑧 

𝜎𝑎𝑣 = 
3 

(𝜎𝑥𝑥 + 𝜎𝑦𝑦  + 𝜎𝑧𝑧 ) 

𝜎𝑎𝑣  = -P – 2 𝜇 ❑ · 𝑉̅→ + 2 𝜇 ❑ · 𝑉̅→ 

𝑃𝑚  = 𝑃 −  𝑌 (❑ · 𝑉̅→) 

Where ‘P’ is the local thermodynamic pressure, and ‘𝑌’ is co-efficient of bulk viscosity. 





Stream function for two dimensional incompressible flow: 

It is convenient to have a means of describing mathematically any particular pattern of flow. A 

mathematical device that serves this purpose is the stream function, . The stream function is 

formulated as a relation between the streamlines and the statement of conservation of mass. The stream 

function  (x, y,t) 

and v(x, y,t) . 

is a single mathematical function that replaces two velocity components, u(x, y,t) 

For a two dimensional incompressible flow in the xy plane, conservation of mass can be written as : 
u  v  0 . 

x y 

If a continuous function  (x, y,t) called stream function is defined such that u  
 

and 
y 

v  
 

, 
x 

then the continuity equation is satisfied exactly. 

u  v   2   2 

Then 

x y xy yx 

0 and the continuity equation is satisfied exactly. 
 



If ds is an element of length along the stream line, the equation of streamline is given by: 
 

V ds 0 = iu  jv idx  jdy kudy  vdx


Thus equation of streamline in a two dimensional flow is: udy  vdx 0 
 


Then we can write: dx  


 dy  0 ---------------------------(1) 

x y 

 
Since   x, y,t then at any instant t0 ,   x, y,t0 . Thus at a given instant a change in  may be evaluated as 

  x, y. 
 

Thus at any instant, d  


 dx  



dy ------------------ (2) 

x y 

 
Comparing Eqn.1 and 2, we see that along an instantaneous streamline d  0 or  is constant along a 

streamline. Since differential of  is exact, the integral of 

on the end points only, i.e. 2 1 . 

d between any two points in a flow field depends 

 

Example problem: Stream Function flow in a corner: 







The velocity field for a steady, incompressible flow is given as:V  Axi Ayj with A=0.3s-1 
 

Determine the stream function that will yield this velocity field. Plot and interpret the streamlines in the first 

quadrant of xy plane: 

Solution: u  Ax  



y 

 
Integration with respect to y yields: 

  
 

dy  f x = 
y 

Axy  f x ; 

 
where f(x) is an arbitrary function of x. 

 
f(x) can be evaluated using the expression for v. Thus we 

can write, 

v   
 

 Ay 
df . 

 

x dx 

 

But from the velocity field description, v  Ay.Hence 
df 

 0 or f(x) =constant. 
dx 

 
Thus,  Axy c . The c is arbitrary constant and can be chosen as zero without any loss in generality. With c=0 

and A=0.3s-1, we have,   Axy . The streamlines in the 1st quadrant is shown in Fig.Regions of high speed 

flow occur where the streamlines are close together. Lower-speed flow occurs near the origin, where the 

streamline spacing is wider. The flow looks like flow in a corner formed by a pair of walls. 

 
 
 
 
 
 
 
 

 
Before formulating the effects of force on fluid motion (dynamics), let us consider first the motion 
(kinematics) of a fluid element on a flow field. For convenience, we follow a infinitesimal element of a 
fixed identity (mass) 



 
 
 

As the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

infinitesimal element of mass ‘dm’ moves in a flow field, several things may happen to it. Certainly the 

element translates, it undergoes a linear displacement from x,y,z to x1,y1,z1. The element may also rotate 

(no change in the included angle in adjacent sides). In addition the element may deform i.e. it may 

undergo linear and angular deformation. Linear deformation involves a deformation in which planes of 

element that were originally perpendicular remain perpendicular. Angular deformation involves a 

distortion of the element in which planes that were originally perpendicular do not remain perpendicular. 

In general a fluid element may undergo a combination of translation, rotation, linear deformation and 

angular deformation during the course of its motion. 

For pure translation or rotation, the fluid element retains its shape, there is no deformation. Thus shear 

stress doesn’t arise as a result of pure translation or rotation (since for a Newtonian fluid the shear stress 

is directly proportional to the rate of angular deformation). We shall consider fluid translation, rotation 

and deformation in turn. 

Fluid translation: Acceleration of a fluid particle in a velocity field. A general description of a 

particle acceleration can be obtained by considering a particle moving in a velocity field. The basic 

hypothesis of continuum fluid mechanics has led us to a field description of fluid flow in which the 

properties of flow field are defined by continuous functions of space and time. In particular, the velocity 



field  is given  by 𝑉̅→=𝑉→̅  (x,y,z,t).  The  field  description is  very powerful,  since  information  for the  entire 

flow is given by one equation. 

The problem, then is to retain the field description for the fluid properties and obtain an expression for 

acceleration of a fluid particle as it moves in a flow field.  Stated simply, the problem is: 

Given the velocity field 𝑉̅→=𝑉̅→(x,y,z,t), find the acceleration of a fluid particle, 𝑎̅̅̅̅𝑝→ . 

Consider the particle moving in a velocity field. At time ‘t’, the particle is at the position x,y,z and has 

velocity corresponding to velocity at that point in space at time ‘t’, i.e. 𝑝̅̅̅𝑉→]t=𝑉̅→(x,y,z,t). 

At ‘t+dt’, the particle has moved to a new position with co-ordinates x+dx, y+dy, z+dz and has a 

velocity given by: ̅𝑉𝑝̅̅→]t+dt=𝑉→̅  (x+dx,y+dy,z+dz,t+dt). 

Fig4.1 

This is shown in pictorial fig 4.1 

𝑉̅̅̅̅𝑑̅→̅   ,𝑝the change in velocity of the particle , in moving from location 𝑟→̅̅   to ̅𝑟̅→ +𝑑̅ ̅̅𝑟̅ → , is given by: 

𝑑̅̅̅̅𝑉̅→̅  = 6̅̅̅̅𝑉
→̅  
dx ̅̅̅6̅̅̅𝑉 ̅6̅̅̅𝑉 ̅6̅̅̅𝑉̅→ 

p + dy 
6𝑥 6𝑦 

p + dz 
6𝑧 p + 

dt 

6𝑡 

The total acceleration of the particle is given by : 
 

𝑎̅ ̅̅̅→= 
𝑑̅̅̅𝑉𝑝̅̅ → 

= 
̅6̅̅̅ 

 

𝑑𝑥𝑝  + 
6̅̅̅̅̅̅𝑉→ ̅  𝑑𝑦𝑝 + 

̅6̅̅̅𝑉 
 

𝑑𝑧𝑝        +
6̅̅̅̅𝑉̅→ 

 

𝑝 𝑑𝑡 6𝑥  𝑑𝑡 6𝑦   𝑑𝑡 6𝑧  𝑑𝑡 6𝑡 

Since 
𝑑𝑥𝑝 = u, 

𝑑𝑦𝑝 = v and 
𝑑𝑧𝑝  = w, 

𝑑𝑡 𝑑𝑡 𝑑𝑡 

𝑝 



𝑎 𝑧𝑝 
= 𝐷w 

= u 6w + v 6w + w 6w + 6w 

𝐷𝑡 6𝑥 6𝑦 6𝑧 6𝑡 

𝐷𝑉 

= (𝑉·❑) 𝑉 +   

= 
̅𝑑̅̅𝑉̅̅𝑝→    ̅6̅̅̅𝑉 ̅̅̅6̅̅̅𝑉 ̅ 6̅̅̅𝑉 

 
 

+
̅6̅̅̅𝑉 

 

𝑝 = u + v  +w 
𝑑𝑡 6𝑥 6𝑦 6𝑧 6𝑡 

 

̅𝐷̅̅̅̅𝑉̅→  
= ̅𝑎̅̅̅→

 
 

 

𝑑𝑉̅̅̅ ̅𝑝̅→     ̅6̅̅̅𝑉 ̅̅̅6̅̅̅𝑉 ̅ 6̅̅̅𝑉 
 

 

̅6̅̅̅𝑉̅→ (4.1)  
  

 =𝑝 = u + v +w +    
𝐷𝑡 𝑑𝑡 6𝑥 6𝑦 6𝑧 6𝑡 

 
̅ ̅̅̅̅ ̅→ 

The derivative is commonly called substantial derivative to remind us that it is computed for a 
𝐷𝑡 

particle of substance. It is often called material derivative or particle derivative. 

From equation 4.1 we recognize that a fluid particle moving in a flow field may undergo acceleration for 

either of the two reasons. It may be accelerated because it is convected into a region of higher (lower) 

velocity. For example, the steady flow through a nozzle, in which by definition, the velocity field is not 

a function of time, a fluid particle will accelerate as it moves through the nozzle. The particle is 

convected into a region of higher velocity. If a flow field is unsteady the fluid particle will undergo an 

additional “local” acceleration, because the velocity field is a function of time. 

The physical significance of the terms in the equation 4.1 is : 

u 
6̅ ̅̅̅𝑉→̅  
+ v 

6̅̅̅̅̅̅ 
+w 

̅ 6̅̅̅𝑉→̅  
= convective acceleration 

6𝑥 6𝑦 6𝑧 

6̅̅̅̅𝑉→̅  
= local acceleration. 

6𝑡 
 

Therefore equation 4.1 can be written as: 

𝑎 ̅̅̅̅→ 
𝐷̅̅̅̅̅𝑉̅→ 

̅ ̅̅̅→ 6̅̅̅̅𝑉 

𝑝 𝐷𝑡 6𝑡 

For a steady and three dimensional flow the equation 4.1 becomes: 

𝐷̅̅̅̅̅𝑉 ̅ 6̅̅̅𝑉̅→ ̅̅̅6̅𝑉̅̅̅→ ̅ 6̅̅̅𝑉̅→ 

= u + v +w ; which is not necessarily zero. 
𝐷𝑡 6𝑥 6𝑦 6𝑧 

 

Equation 4.1 may be written in scalar component equation as: 
 

 
 

 
 
 

 
 
 

(4.2 a) 

 
(4.2 b ) 

 
(4.2 c) 

𝑎 𝑦𝑝 
= 𝐷𝑣 

= u 6𝑣 + v 6𝑣 + w 6𝑣 + 6𝑣 

𝐷𝑡 6𝑥 6𝑦 6𝑧 6𝑡 

𝑎 𝑥𝑝 
= 𝐷𝑢 

= u 6𝑢 + v 6𝑢 + w 6𝑢 + 6𝑢 

𝐷𝑡 6𝑥 6𝑦 6𝑧 6𝑡 

=



Δ𝑡 

We have obtained an expression for the acceleration of a particle anywhere in the flow field; this is the 
Eularian method of description. One substitutes the coordinates of the point into the field expression for 
acceleration. 

In the Lagrangian method of description, the motion (position, velocity and acceleration) of a fluid 
particle is described as a function of time. 

Fluid rotation: A fluid particle moving in a general three dimensional flow field may rotate about all 

three coordinate axes. The particle rotation is a vector quantity and in general m̅ ̅→ = ı^ ωx +  𝑗^ ωy +  

𝑘̂ ωz ; where ωx is the rotation about x axis. 

To evaluate the components of particle rotation vector, we define the angular velocity about an axis as 

the average angular velocity of two initially perpendicular differential line segments in a plane 

perpendicular to the axis of rotation. 

 
 

 
 

To obtain a mathematical expression for ωz , the component of fluid rotation about the z axis, consider 
motion of fluid in x-y plane. The components of velocity at every point in the field are given by u(x,y) 
and v(x,y). Consider first the rotation of line segment oa of length Δx. Rotation of this line is due to the 
variation of ‘y’ component of velocity. If the ‘y’ component of the velocity at point ‘o’ is taken as Vo , 
then the ‘y’ component velocity at point ‘a’ can be written using Taylor expansion series as: 

 
V = Vo +6𝑉Δx 

6𝑥 
 

ωoa =𝑙i𝑚∆𝑡→0 
∆𝛼 = 𝑙i𝑚 

∆𝑦 
 

 

 Δ𝑥 
∆𝑡→0 Δ𝑡 

 

since Δη= ( Va - Vo ) Δt =6𝑣ΔxΔt 
6𝑥 

ωoa   =𝑙i𝑚∆𝑡→0 

 
6𝑣 

(  )(Δ𝑥Δ𝑡) 
   6𝑥 = 

Δ𝑥Δ𝑡 

 
6𝑣 

 

6𝑥 



6𝑦 = − 

𝜔̅→ =1  ❑ x 𝑉̅→ 
2 

The angular velocity of ‘ob’ is obtained similarly. If the x- component of velocity at point ‘b’ is uo + 

·Δy 

6𝑢 

6𝑦 

 

ωob =𝑙i𝑚 ∆𝛽 = 𝑙i𝑚 
∆£ 

Δ𝑦 
 

∆𝑡→0  Δ𝑡 ∆𝑡→0  Δ𝑡 

ub=6𝑢Δy; which will rotate the fluid element in clock-wise direction, thus –ve sign is multiplied to 
6𝑦 

make it counter clock-wise direction. 
 

6𝑢 
    ΔyΔt   (-ve sign is used to give +ve value of 
6𝑦 

ω
ob 

) 
 

Thus ω =𝑙i𝑚 
ob ∆𝑡→0 

−( 
6u 

)(Δ𝑦Δ𝑡) 6𝑢 
Δ𝑦Δ𝑡 6𝑦 

 

The rotation of fluid element about z- axis is the average angular velocity of the two mutually 
perpendicular line segments, oa and ob, in the x-y plane. 

Thus ω
z = 

1 [
6𝑣 

− 
6𝑢

] 
2   6𝑥 6𝑦 

 

By considering the rotation about other axes : 

ω = 1 [
6w

 
 

  

− 
6𝑣 

] and ω  
= 

1 [
6𝑢 

− 
6w

] 
 

   

x 2  6𝑦 6𝑧 
y 2  6𝑧 6𝑥 

Then  𝜔̅→ =1 [(
6w  

− 
6𝑣 6𝑢 6w 6𝑣 6𝑢

) 𝑘̂] ; which can be written in vector 
   ) ı^ + ( − ) 𝑗^ + ( −    

2 6𝑦 6𝑧 6𝑧 6𝑥 6𝑥 6𝑦 

notation as : 
 

 

 
Under what conditions might we expect to have a flow without rotation ( irrotational flow ) ? 

 
A fluid particle moving, without any rotation, in a flow field cannot develop rotation under the action of 
body force or normal surface forces. Development of rotation in fluid particle, initially without rotation, 
requires the action of shear stresses on the surface of the particle. Since shear stress is proportional to the 
rate of angular deformation, then a particle that is initially without rotation will not develop a rotation 
without simultaneous angular deformation. The shear stress is related to the rate of angular deformation 
through viscosity. The presence of viscous force means the flow is rotation. 

The condition of irrotationality may be a valid assumption for those regions of a flow in which viscous 
forces are negligible. (For example , such a region exists outside the boundary layer in the flow over a 
solid surface.) 

But Δ£ = − 



A term vorticity is defined as twice of the rotation as: 

Ç→ =2 𝜔̅→ = ❑ x 𝑉̅→ 

The circulation, is defined as the line integral of the tangential velocity component about a closed 

curve fixed in the flow ; = 𝑉→̅ ̅𝑑̅̅̅𝑆→ 
𝑐 

 

where   ̅̅̅̅𝑑𝑆→   elemental vector tangent to the curve , a positive sense corresponds to a counter clock-wise 
path of integration around the curve. A relation between circulation and vorticity can be obtained by 
considering the fluid element as shown: 

 

ΔΓ =uΔx +(𝑣 + 
𝑑𝑣 

Δ𝑥) Δ − (𝑢 + 
𝑑𝑢 

Δ𝑦) Δ𝑥 –vΔy 
𝑑𝑥 𝑑𝑦 

 

=(
𝑑𝑣 

− 
𝑑𝑢

) Δ𝑥Δ𝑦 = 2ωz Δ𝑥Δ𝑦 
𝑑𝑥 𝑑𝑦 

 

Γ = ∆   =   𝑉→̅ 
𝑐 

 

=∫𝐴 2𝜔Z dA 

=> 

̅𝑑̅̅̅𝑆→ 

 
 
 

Angular deformation: Angular deformation of a fluid element involves changes in the perpendicular 
line segments on the fluid. 

 

Γ =∫ (∇x̅→)  dA 
𝐴 Z 



 
We see that the rate of angular deformation of the fluid element in the xy plane is the rated of decrease 
of angle “γ” between the line oa and ob. Since during interval Δt, 

Δ γ = γ-90 = - ( Δ α+Δ β ) 
 

=>- 𝑑𝛾 
= 

𝑑𝛼 
+ 

𝑑𝛽 

𝑑𝑡 𝑑𝑡 𝑑𝑡 
 

Now; 
 

𝑑𝛼 = 𝑑𝑣 and 𝑑𝛽 = 𝑑𝑢 

𝑑𝑡 𝑑𝑥 𝑑𝑡 𝑑𝑦 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INCOMPRESSIBLE INVISCID FLOW 
 

All real fluids posses viscosity. However, in many flow cases it is reasonable to neglect the effect of 
viscosity. It is useful to investigate the dynamics of an ideal fluid that is incompressible and has zero 
viscosity. The analysis of ideal fluid motion is simpler because no shear stresses are present in inviscid 
flow. Normal stresses are the only stresses that must be considered in the analysis. For a non viscous 
fluid in motion, the normal stress at a point is same in all directions (scalar quantity) and equals to the 

negative of the thermodynamic pressure, σnn = −P. 

Momentum equation for frictionless flow: Euler’s equations: 

The equations of motion for frictionless flow, called Euler’s equations, can be obtained from the general 
equations of motion, by putting μ = 0 and σnn = -p. 



x

y

z

θ 𝑟 𝑧 

+ ) 

6𝑃 6𝑢 6𝑢 

ρg  −    = ρ (   + 𝑢  
6𝑢  

+ 𝑣  
6𝑢 +  𝑤 ) 

6𝑥 6𝑡 6𝑥 6𝑦 6𝑧 
6𝑃 6𝑣 6𝑣 

ρg  −    = ρ (   + 𝑢  
6𝑣  

+ 𝑣  
6𝑣      +  𝑤   ) 

6𝑦 6𝑡 6𝑥 6𝑦 6𝑧 
6𝑃 6w 6w 

ρg − = ρ ( + 𝑢 
6w 

+ 𝑣 
6w   + 𝑤  ) 

6𝑧 6𝑡 6𝑥 6𝑦 6𝑧 
 

In vector form it can be written as: 
 

̅→ 
ρg̅→ − ∇P = ρ  ( 

6𝑉 

 
+ 𝑢 6𝑉 

 
+ 𝑣 6𝑉 + 𝑤 

6𝑉 
) 

6𝑡 6𝑥 6𝑦 6𝑧 

̅→ 

=> ρg̅→ − ∇P= ρ ( 6𝑉 
6𝑡 

+ (𝑉̅→ ∇)𝑉̅→ ) 

 

=> 
 
 

In cylindrical co-ordinates: 
 

r: ρ gr − 
6𝑃 

= ρ ( 
6𝑉r + 𝑉𝑟 6𝑉r 

 + 𝑉𝜃    6𝑉r + 𝑉𝑧 
6𝑉r 𝑉2

 
− 𝜃 ) 

6𝑟 6𝑡 6𝑟 𝑟 6𝜃 6𝑧 𝑟 

: ρ g   − 1  6𝑃  = ρ ( 6𝑉𝜃 + 𝑉   6𝑉𝜃   + 𝑉𝜃    6𝑉𝜃    +  𝑉  6𝑉𝜃 +  𝑉𝜃𝑉r) 
𝑟  6𝜃 6𝑡 6𝑟 𝑟 6𝜃 6𝑧 𝑟 

6𝑃 6𝑉z 

𝑧: ρ g −   = ρ (   + 𝑉   6𝑉z  𝑉𝜃    6𝑉z    +  𝑉  6𝑉z 
z 

6𝑧 6𝑡 𝑟    6𝑟 𝑟 6𝜃 𝑧  6𝑧 

 

Euler’s equations in streamline co-ordinates: 
 
 

 

ρ→̅g − ∇P= ρ 𝐷𝑉  
𝐷𝑡 

̅→ 



 

Applying Newton’s 2nd law in streamwise (the ‘s’) direction to the fluid element of volume ds x dn x 
dx, and neglecting viscous forces we obtain: 

(𝑃 − 
6𝑃   𝑑𝑠 6𝑃 

𝑑𝑠
 

       ) dn dx − (𝑃 + )dn dx – 𝜌 g 𝑠i𝑛𝛽 𝑑𝑠 𝑑𝑛 𝑑𝑥 = 𝜌 𝑎 𝑑𝑠 𝑑𝑛 𝑑𝑥 
6𝑠    2 6𝑠    2 𝑠 

Simplifying the equation we have: 
 

− 
6𝑃 

6𝑠 
− 𝜌 g 𝑠i𝑛𝛽 = 𝜌 𝑎𝑠 

Since 𝑠i𝑛𝛽 = 
6𝑧 

, we can write: 
6𝑠 

6𝑃 − 𝜌 g   
6𝑧  

=  𝜌 
𝐷𝑉→̅   

= 
 

  

 
 
6𝑉 

+ 𝑉 
6𝑉

)
 

− 
6𝑠 

   𝜌 (       
6𝑠 𝐷𝑡 6𝑡 6𝑠 

 

=> 
 
 

 

To obtain Euler’s equation in a direction normal to the streamlines, we apply Newton’s 2nd law in the ‘n’ 
direction to the fluid element. Again, neglecting viscous forces; we obtain: 

(𝑃 − 
6𝑃   𝑑𝑛

) ds dx − (𝑃 + 
6𝑃 

𝑑𝑛)ds dx – 𝜌 g  𝑐𝑜𝑠𝛽 𝑑𝑛 𝑑𝑥 𝑑𝑠 = 𝜌 𝑎 𝑑𝑛 𝑑𝑥 𝑑𝑠 
    

6𝑛   2 6𝑛   2 𝑛 

where ‘β’ is the angle between ‘n’ direction and vertical and ‘an’ is the acceleration of the fluid particle 
in ‘n’ direction. 

 
 

− 
6𝑃 

6𝑛 

 
− 𝜌 g 𝑐𝑜𝑠𝛽 = 𝜌 𝑎𝑛 

Since 𝑐𝑜𝑠𝛽 = 
6𝑧 

, we can write: 
6𝑛 

 

− 
1 6𝑃 

− g 
6𝑧 

= 𝑎
 

𝜌  6𝑛 6𝑛 
 

The normal acceleration of the fluid element is towards the centre of curvature of the streamline; in the 
= − 

𝑉2

 negative ‘n’ direction. Thus 𝑎 
𝑅 

 

=> 

− 
1  6𝑃 

− g  
6𝑧 

= 
6𝑉 

+ 𝑉 
6𝑉 

𝜌  6𝑠 6𝑠 6𝑡 6𝑠 

𝜌  6𝑛 

1  6𝑃 
+ g  

6𝑧  
= 

𝑉2 

6𝑛 𝑅 

𝑛 

𝑛



For steady flow on a horizontal plane, Euler’s equation normal to the streamline can be written as: 
 

 

=> 
1

 

𝜌 

6𝑃 

6𝑛 
= 

𝑉2 

𝑅 
 

Above equation indicates that pressure increases in the direction outward from the centre of curvature of 
streamlines. 

Bernoulli’s equation: Integration of Euler’s equation along a stream line for steady flow( 
Derivation using stream line co-ordinates): 

Euler’s equation for steady flow will be: 
 

− 
1 6𝑃 

− g  
6𝑧 

= 𝑉 
6𝑉 

𝜌   6𝑠 6𝑠 6𝑠 
 

If a fluid particle moves a distance ‘ds’ along a streamline, then 
 

6𝑃 𝑑𝑠 = 𝑑𝑝 (the change in pressure along ‘s’) 
6𝑠 

 
6𝑧 𝑑𝑠 = 𝑑𝑧 (the change in elevation along ‘s’) 
6𝑠 

 
6𝑉 𝑑𝑠 = 𝑑𝑉 (the change in velocity along ‘s’) 
6𝑠 

Thus; − 
𝑑𝑃 

− g 𝑑𝑧 = 𝑉𝑑𝑉 
𝜌 

=> 
𝑑𝑃 

+𝑉𝑑𝑉 + g 𝑑𝑧 = 0 
𝜌 

 

=> ∫ 𝑑𝑃 + 
𝑉2 

+ g𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑎𝑙𝑜𝑛𝑔 ′𝑠′) (5.1) 
𝜌 2 

 

For an incompressible flow, i.e. ′𝑃′ is not a function of ′𝜌′; we can write: 
 

 
𝑃 

+ 
𝑉2 

+ g𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑎𝑙𝑜𝑛𝑔 ′𝑠′) 
𝜌 2 

 

Restrictions: 
 

i. Steady flow 
ii. Incompressible flow 

iii. Inviscid 
iv. Flow along a stream line 



* In general the constant has different values along different streamlines. 
 

 

* For derivation using rectangular co-ordinates, refer page-7. 
 
 

Unsteady Bernoulli’s equation( Integration of Euler’s equation along a stream line): 
 

− 
1 ❑P− g̅→ = 
𝜌 

𝐷𝑉̅→ 
or

 
𝐷𝑡 

 

− 
1  6𝑃 

− g 
6𝑧 

= 
6𝑉 

+ 𝑉 
6𝑉 

𝜌   6𝑠 6𝑠 6𝑡 6𝑠 
 

Multiplying ds and integrating along a stream line between two points ‘1’ and ‘2’, 
 

2 𝑑𝑝 𝑉
2

−𝑉  
2

 2 6𝑉 
∫ + 2 1 + g (z2 − z1) + ∫ ds =0 

1   𝜌 2 1 6𝑡 
 

For an incompressible flow, the above equation reduces to : 
 

𝑃1 𝑉
2 

 
 

𝑃 𝑉
2

 
 

 

2 6𝑉 ds 

+ 1 + g z1 = 2 + 2 + g z2 + ∫      
𝜌 2 𝜌 2 1 6𝑡 

 
 
 

Restrictions: 
 

i. Incompressible flow 
ii. Frictionless flow 

iii. Flow along a stream line 
 
 

Ex: A long pipe is connected to a large reservoir that initially is filled with water to a depth of 3 m. The 

pipe is 150 mm in diameter and 6 m long. Determine the flow velocity leaving the pipe as a function of 
time after a cap is removed from its free end. 



 

2

∫ ∫ 

2

 
 
 
 

Ans: Applying Bernoulli”s equation between 1 and 2 we have: 
 

𝑃 𝑉
2 

+ g z 
 

 

2 = 𝑃 𝑉   +g z 
 

 

+ ∫2 6𝑉 

1 + 1 1 2 + 2 2   ds 
𝜌 2 𝜌 2 1 6𝑡 

 

Assumptions: 
 

i. Incompressible flow 
ii. Frictionless flow 

iii. Flow along a stream line for ‘1’ and ‘2’ 

iv. P1 = P2 = Patm 

v. V1 =0 
vi. Z2=0 

vii. Z1=h 
viii. Neglect velocity in reservoir, except for small region near the inlet to the tube. 

 

Then;   g z1 = g ℎ =  𝑉2   + ∫2 6𝑉    ds (1) 
2 1 6𝑡 

In view of assumption ‘viii’, the integral becomes 

2 6𝑉 ds ≈ 
𝐿 6𝑉 ds 

1  6𝑡 0 6𝑡 

In the tube, V = V2, everywhere, so that 

∫
𝐿 6𝑉 

ds = ∫
𝐿 𝑑𝑉2 ds = L 

𝑑𝑉2
 

0  6𝑡 0   𝑑𝑡 𝑑𝑡 

Substituting in the equation (1), 
 

g ℎ = 
𝑉2 

 

2 
+𝐿 

𝑑𝑉2 

𝑑𝑡 



 

2 

0   2gℎ−𝑉2 

= −1 
2     

  𝑡   

=

Separating the variables we obtain: 
 

    𝑑𝑉2      = 𝑑𝑡 

2gℎ−𝑉2 2𝐿 
 

Integrating between limits V = 0 at t = 0 and V = V2 at t = t, 
 

∫
𝑉2   𝑑𝑉2  

2 
    1  𝑉  𝑉 

[ 𝑡𝑎𝑛ℎ ( )] = 
√2gℎ √2gℎ 

0 
2𝐿 

Since 𝑡𝑎𝑛ℎ−1(0) = 0, we obtain 
 

    1  
 

 

√2gℎ 

𝑡𝑎𝑛ℎ−1 (  
𝑉

 

√2gℎ 
) = 𝑡 

2𝐿 

   𝑉2 𝑡 
=> 𝑡𝑎𝑛ℎ ( √2gℎ) 

√2gℎ 2𝐿 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bernoulli’s equation using rectangular coordinates: 

− 
1   

∇P –  g 𝑘̂ =  (𝑉→̅   ∙ ∇)𝑉̅→ 
𝜌 

 

Using the vector identity: 
 

(𝑉 ∙ ∇) =  
1
  ∇ ( 

2 
∙ 𝑉̅→) −  𝑉→̅   x  (∇ x 𝑉̅→) 

 

For irrotational flow: ∇ x 𝑉 = 0 
 

So  ( ∙ ∇)𝑉̅→ =  
1
  ∇ (𝑉→̅   ∙ 𝑉̅→) 
2 

− 
1   

∇P –  g 𝑘̂ =  1  ∇ (𝑉̅→ ∙ 𝑉̅→) =  1  ∇ (V2) 
𝜌 2 2 

 

Consider a displacement in the flow field from position ‘𝑟→’ to ‘ 𝑟→ +d𝑟→’, the displacement ‘d𝑟→’ being an 
arbitrary infinitesimal displacement in any direction . Taking the dot product of 𝑑𝑟→ =dx ı^ + dy 𝑗^  + 
dz 

𝑘̂ with each of the terms, we have 



 

𝑃 
𝜌 + 

𝑉   

2 
+ g 𝑧 = constant 

− 
1   

∇P· d𝑟→ –  g 𝑘   ∙  𝑑𝑟→  =  1  ∇ (V2) · d𝑟→ 
𝜌 2 

And hence − 
𝑑𝑃 − g 𝑑𝑧 = 1 𝑑(𝑉2) 

𝜌 2 

=> 
𝑑𝑃 + 

1 
𝑑(𝑉2) + g 𝑑𝑧 =0 

𝜌 2 

 

=>    (5.2) 
 
 

 
Since ‘dr→’ was an arbitrary displacement, equation ‘5.2’ is valid between any two points in a steady, 
incompressible and inviscid flow that is irrotational. 

If ‘dr→’  = ‘ds→’  i.e. the integration is to be performed along a stream line, then taking the dot product of 
𝑑𝑠, we get: 

 

(𝑉 ∙ ❑)𝑉̅→ ∙ 𝑑𝑠 =  
1 

  ❑ (𝑉̅→ ∙ 𝑉̅→)  ∙ 𝑑𝑠 −  𝑉→̅   x  (❑ 𝑥 𝑉̅→) · ds 
2 

 

Here even though   (∇ x 𝑉→̅  ) is not zero, the product 𝑉x  (∇ x 𝑉̅→) · ds 
 

will be zero as 𝑉x  (∇ x 𝑉→̅  ) is perpendicular to V and hence perpendicular to ds. 
 

# A fluid that is initially irrotational may become rotational if:- 
 

1. There are significant viscous forces induced by jets, wakes or solid boundaries. In these cases 
Bernoulli’s equation will not be valid in such viscous regions. 

2. There are entropy gradients caused by shock waves. 
3. There are density gradients caused by stratification (uneven heating) rather than by pressure 

gradients. 
4. There are significant non inertial effects such as earth’s rotation (The Coriolis component). 

 
 

HGL and EGL: 

Hydraulic Grade Line (HGL) corresponds to the pressure head and elevation head i.e. Energy Grade 
Line(EGL) minus the velocity head. 

EGL = 
𝑃

 

𝜌g 

+ 
𝑉2 

+ 𝑧 =H (Total Bernoulli’s constant) 
2g 



 

2g(ZA  ZB ) 

 
 
 
 

Principles of a hydraulic Siphon: Consider a container T containing some liquid. If one end of 

the pipe S completely filled with same liquid, is dipped into the container with the other end being open 

and vertically below the free surface of the liquid in the container T, then liquid will continuously flow 

from the container T through pipe S and get discharged at the end B. This is known as siphonic action 

and the justification of flow can be explained by applying the Bernoulli’s equation. 

Applying the Bernoulli’s equation between point A and B, we can write 
 

PA  
PB VB

2 

g 
0  ZA  

g 
 

2g 
 ZB 

The pressure at A and B are same and equal to atmospheric pressure. Velocity at A is negligible 

compared to velocity at B, since the area of the tank T is very large compared to that of the tube S. 

Hence we get, 

 

VB  = 2gZ 



 

The above expression shows that a velocity head at B is created at the expenses of the potential head 

difference between A and B. 

Applying the Bernoulli’s equation between point A and B, we can write 
 

PA  
PC   VC

2 
 

0  ZA  
ρg ρg 2g 

 ZC 

 

Considering the pipe cross section to be uniform, we have, from continuity, VB=VC 

 
Thus we can write; PC  Patm  VB

2 

 h 
ρg ρg 2g 

 

Therefore pressure at C is below atmospheric and pressure at D is the lowest as the potential head is 

maximum here. The pressure at D should not fall below the vapor pressure of the liquid, as this may 

create vapor pockets and may stop the flow. 



 

CHAPTER-4 

Hydraulic Machines-Turbines 

A hydraulic turbine uses potential energy and kinetic energy of water and converts it into usable 
mechanical energy. The mechanical energy made available at the turbine shaft is used to run an 
electric power generator which is directly coupled to the turbine shaft. 

 

The hydraulic turbines are classified according to type of energy available at the inlet of turbine, 
direction of flow through vanes, head at the inlet of the turbines and specific speed of the turbines. 

 
According to the type of energy at inlet: 

Impulse turbine:- In the impulse turbine, the total head of the incoming fluid is converted in to a 
large velocity head at the exit of the supply nozzle. That is the entire available energy of the water is 
converted in to kinetic energy. Although there are various types of impulse turbine designs, perhaps 
the easiest to understand is the Pelton wheel turbine. It is most efficient when operated with a large 
head and lower flow rate. 

 
 

Reaction turbine :-Reaction turbines on the other hand, are best suited -for higher flow 
rate and lower head situations. In this type of turbines, the rotation of runner or rotor 
(rotating part of the turbine) is partly due to impulse action and partly due to change 
pressure over the runner blades; therefore, it is called as reaction turbine . For, a 
reaction turbine, the penstock pipe feeds water to a row of fixed blades through casing. 
These fixed blades convert a part of the pressure energy into kinetic energy before 
water enters the runner. The water entering the runner of a reaction turbine has both 
pressure energy and kinetic energy. Water leaving the turbine is still left with some 
energy (pressure energy and kinetic energy). Since, the flow from the inlet to tail race 
is under pressure, casing is absolutely necessary to enclose the turbine. In general, 
Reaction turbines are medium to low-head , and high -flow rate devices . The reaction 
turbines in use are Francis and Kaplan. 

 
 

According to the direction of flow through runner: 

Tangential flow turbines : In this type of turbines, the water strikes the runner in the 

direction of tangent to the wheel. Example: Pelton wheel turbine. 

Radial flow turbines: In this type of turbines, the water strikes in the radial direction. 

accordingly, it is further classified as, 



 

 

Axial flow turbine:The flow of water is in the direction parallel to the axis of the 

shaft. Example: Kaplan turbine and propeller turbine. 

Mixed flow turbine: The water enters the runner in the radial direction and leaves in 

axial direction. Example: Modern Francis turbine. 
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Impulse Hydraulic Turbine
 

Figure Typical

 
The only hydraulic turbine of the
after an American engineer Laster A Pelton, who contributed much to its
development around the
Pelton turbine or Pelton wheel. It is
to high heads. The rotor co
number (seldom less than 15) of spoon shaped buckets are spaced uniformly
round is periphery as shown in Figure 1.1. The wheel is driven by jets of
water being discharged at atmospheric pressure from pres
nozzles are mounted so that each directs a jet along a tangent to the circle
through the centres of the buckets (Figure 1.2). Down the centre of each
bucket, there is a splitter ridge which divides the jet into two equal streams
which flow round the smooth inner surface of the bucket and leaves the
bucket with a relative velocity
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Turbine : The Pelton Wheel 

Typical PELTON WHEEL with 21 Buckets 

The only hydraulic turbine of the impulse type in common use,
after an American engineer Laster A Pelton, who contributed much to its

the year 1880. Therefore this machine is
or Pelton wheel. It is an efficient machine particularly suited

to high heads. The rotor consists of a large circular disc or wheel on which a
number (seldom less than 15) of spoon shaped buckets are spaced uniformly
round is periphery as shown in Figure 1.1. The wheel is driven by jets of
water being discharged at atmospheric pressure from pressure nozzles. The
nozzles are mounted so that each directs a jet along a tangent to the circle
through the centres of the buckets (Figure 1.2). Down the centre of each
bucket, there is a splitter ridge which divides the jet into two equal streams

w round the smooth inner surface of the bucket and leaves the
velocity almost opposite in direction to the original

  

impulse type in common use, is named 
after an American engineer Laster A Pelton, who contributed much to its 

is known as 
machine particularly suited 

nsists of a large circular disc or wheel on which a 
number (seldom less than 15) of spoon shaped buckets are spaced uniformly 
round is periphery as shown in Figure 1.1. The wheel is driven by jets of 

sure nozzles. The 
nozzles are mounted so that each directs a jet along a tangent to the circle 
through the centres of the buckets (Figure 1.2). Down the centre of each 
bucket, there is a splitter ridge which divides the jet into two equal streams 

w round the smooth inner surface of the bucket and leaves the 
original jet. 
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For maximum change in 

driving force on the wheel,

practice, however, the deflection
leaving a bucket may not

camber angle of the buckets
 

The number of jets is not more than two for horizontal shaft turbines and is
limited to six for vertical shaft turbines. The flow partly fills the buckets and
the fluid remains in contact with the atmosphere. Therefore, once the jet is
produced by the nozzle, the static pressure of the fluid remains atmospheric
throughout the machine. Because of the symmetry of the buckets, the side
thrusts produced by the fluid

 
Analysis of force on the bucket

 
Figure 1.3a shows a section
jet. The plane of section 

axis of the jet. The absolute velocity of the jet  
bucket is given by 
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Figure:A Pelton wheel 

 momentum of the fluid and hence for the

wheel, the deflection of the water jet should 

deflection is limited to about so that
not hit the back of the following bucket. Therefore,

buckets is made as . Figure(1.3a)

The number of jets is not more than two for horizontal shaft turbines and is
limited to six for vertical shaft turbines. The flow partly fills the buckets and
the fluid remains in contact with the atmosphere. Therefore, once the jet is
produced by the nozzle, the static pressure of the fluid remains atmospheric
throughout the machine. Because of the symmetry of the buckets, the side

fluid in each half should balance each other.

bucket and power generation 

section through a bucket which is being acted
 is parallel to the axis of the wheel and contains

axis of the jet. The absolute velocity of the jet   with which it strikes the

  

 

the maximum 

 be . In 

that the water 
Therefore, the 

Figure(1.3a) 

The number of jets is not more than two for horizontal shaft turbines and is 
limited to six for vertical shaft turbines. The flow partly fills the buckets and 
the fluid remains in contact with the atmosphere. Therefore, once the jet is 
produced by the nozzle, the static pressure of the fluid remains atmospheric 
throughout the machine. Because of the symmetry of the buckets, the side 

other. 

acted on by a 
contains the 

with which it strikes the 
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Figure1.3 
 

 

where, 𝐶𝑣 is the coefficient of velocity which takes care of the friction in the
nozzle. H is the head at the entrance to the nozzle which is equal to the total
or gross head of water stored at high altitudes minus the head lost due to
friction in the long pipeline 
bucket (due to the rotation
be U . Since the jet velocity 
diagram of velocity vector at inlet (Fig 26.3.b) becomes simply a straight line
and the relative velocity is

 
 

 
It is assumed that the flow of fluid is uniform and it glides the blade all along
including the entrance and
to shock. Therefore the direction of relative velocity at entrance and exit
should match the inlet and outlet angles of the buckets respectively. The
velocity triangle at the 
velocity U remains the same
of U being taken as positive, we can write. The tangential component of inlet
velocity (Figure 1.3b) 
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(a)Flow along the bucket of a pelton wheel 

(b) Inlet velocity triangle 
(c)Outlet velocity triangle 

is the coefficient of velocity which takes care of the friction in the
is the head at the entrance to the nozzle which is equal to the total

or gross head of water stored at high altitudes minus the head lost due to
friction in the long pipeline leading to the nozzle. Let the velocity of the

rotation of the wheel) at its centre where the
. Since the jet velocity 𝑉1 is tangential, i.e. 𝑉1 and U are collinear, the

diagram of velocity vector at inlet (Fig 26.3.b) becomes simply a straight line
velocity is given by 

It is assumed that the flow of fluid is uniform and it glides the blade all along
and exit sections to avoid the unnecessary

to shock. Therefore the direction of relative velocity at entrance and exit
should match the inlet and outlet angles of the buckets respectively. The

 outlet is shown in Figure 1.3c. The
same both at the inlet and outlet. With the

being taken as positive, we can write. The tangential component of inlet

  

 

is the coefficient of velocity which takes care of the friction in the 
is the head at the entrance to the nozzle which is equal to the total 

or gross head of water stored at high altitudes minus the head lost due to 
leading to the nozzle. Let the velocity of the 

the jet strikes 
are collinear, the 

diagram of velocity vector at inlet (Fig 26.3.b) becomes simply a straight line 

It is assumed that the flow of fluid is uniform and it glides the blade all along 
unnecessary losses due 

to shock. Therefore the direction of relative velocity at entrance and exit 
should match the inlet and outlet angles of the buckets respectively. The 

The bucket 
the direction 

being taken as positive, we can write. The tangential component of inlet 
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and the tangential component of
 

 
where 𝑉𝑟1 and 𝑉𝑟2 are the velocities of the jet relative to the bucket at its inlet
and outlet and is the outlet angle

From the Eq. (1.2) (the Euler's
delivered by the fluid per unit

 

 
(since, in the present situation, 

 
The relative velocity 𝑉𝑟2 becomes slightly less than 
friction in the bucket. Some additional loss is also inevitable as the fluid strikes
the splitter ridge, because the ridge cannot have zero thickness. These losses are
however kept to a minimum by making the inner surface of the bucket polished
and reducing the thickness 

outlet   is usually expressed as
less than 1. However in an ideal case ( in absence of friction between the fluid
and blade surface) K=1. Therefore,

 

 
If Q is the volume flow rate of the jet, then the power transmitted by the fluid to
the wheel can be written as 

 
 

 
The power input to the wheel

 
at the wheel and is given by
turbine can be written as 
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component of outlet velocity (Figure 1.3c) 

are the velocities of the jet relative to the bucket at its inlet
outlet angle of the bucket. 

Euler's equation for hydraulic machines), 
unit mass to the rotor can be written as 

  (1.1)

becomes slightly less than 𝑉𝑟1 mainly because of the
friction in the bucket. Some additional loss is also inevitable as the fluid strikes
the splitter ridge, because the ridge cannot have zero thickness. These losses are
however kept to a minimum by making the inner surface of the bucket polished

 of the splitter ridge. The relative velocity

expressed as   where, K is a factor with a value
less than 1. However in an ideal case ( in absence of friction between the fluid

Therefore, we can write Eq.(1.1) 

                                    (1.2)

If Q is the volume flow rate of the jet, then the power transmitted by the fluid to
 

                       (1.3)

the wheel is found from the kinetic energy of the jet

by . Therefore the wheel efficiency

  

are the velocities of the jet relative to the bucket at its inlet 

 the energy 

(1.1) 

mainly because of the 
friction in the bucket. Some additional loss is also inevitable as the fluid strikes 
the splitter ridge, because the ridge cannot have zero thickness. These losses are 
however kept to a minimum by making the inner surface of the bucket polished 

velocity at 

where, K is a factor with a value 
less than 1. However in an ideal case ( in absence of friction between the fluid 

(1.2) 

If Q is the volume flow rate of the jet, then the power transmitted by the fluid to 

(1.3) 

the jet arriving 

efficiency of a pelton 
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It is found that the efficiency

design of the bucket, i.e. for

becomes a function of 

by   at which becomes
 

For to be maximum, 
 
 

 
or, 

 
 
 

is always negative.
 

Therefore, the maximum wheel
given by eqn.(1.5) in eqn.(1.4)

 
 

 
The condition given by Eq. (1.5) states that the efficiency of the wheel in converting
the kinetic energy of the jet into mechanical energy of rotation becomes maximum
when the wheel speed at the centre

velocity of the jet. The overall efficiency      will be less than       because of friction
in bearing and windage, i.e. friction between the wheel and the atmosphere in which
it rotates. Moreover, as the losses

rapidly with speed, the overall efficiency reaches it peak when the ratio
slightly less than the theoretical

is about 0.46. The Figure 2.1 shows

to jet speed ratio for assumed
efficiency of 85-90 percent may
high values of wheel efficiency,
properly designed. The length,
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(1.4)

efficiency depends on   and   For a given

for constant values of   and K, the efficiency

 only, and we can determine the condition

becomes maximum. 

(1.5)

negative. 

wheel efficiency can be written after substituting
in eqn.(1.4) as 

 

The condition given by Eq. (1.5) states that the efficiency of the wheel in converting
the kinetic energy of the jet into mechanical energy of rotation becomes maximum

centre of the bucket becomes one half of 

velocity of the jet. The overall efficiency      will be less than       because of friction
in bearing and windage, i.e. friction between the wheel and the atmosphere in which

losses due to bearing friction and windage

rapidly with speed, the overall efficiency reaches it peak when the ratio
theoretical value of 0.5. The value usually obtained

shows the variation of wheel efficiency 

assumed values at k=1 and 0.8, and 
may usually be obtained in large machines.

efficiency, the buckets should have smooth surface
length, width, and depth of the buckets are 

  

(1.4) 

For a given 

and K, the efficiency 

condition given 

(1.5) 

substituting the relation 

  (1.6) 

The condition given by Eq. (1.5) states that the efficiency of the wheel in converting 
the kinetic energy of the jet into mechanical energy of rotation becomes maximum 

 the incoming 

velocity of the jet. The overall efficiency      will be less than       because of friction 
in bearing and windage, i.e. friction between the wheel and the atmosphere in which 

windage increase 

rapidly with speed, the overall efficiency reaches it peak when the ratio  is 
obtained in practice 

 with blade 

 . An overall 
machines. To obtain 

surface and be 
 chosen about 
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and 0.8 times the jet diameter.
jet. 

 

Figure 2.1 Theoretical variation of wheel efficiency for a Pelton
turbine with blade speed

 
Specific speed and wheel geometry

 
The specific speed of a pelton wheel depends on the ratio of jet diameter 
wheel pitch diameter. D (the diameter at the centre of the bucket). If the hydraulic
efficiency of a pelton wheel is defined as the ratio of the power delivered 
wheel to the head available H at

 
 

 
 
 
 

Since [ 
 
 
 

The specific speed       = 

 
 
 
 

The optimum value of the overall efficiency of a Pelton turbine depends both on
the values of the specific speed and the speed ratio. The Pelton wheels with a
single jet operate in the specific speed range of 4
lies between 6 to 26 as given by the Eq. (15.25b). A large value of D/d reduces
the rpm as well as the mechanical efficiency of the wheel. It is possible to
increase the specific speed by
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diameter. The buckets are notched for smooth

Figure 2.1 Theoretical variation of wheel efficiency for a Pelton 
speed to jet speed ratio for different values of k 

geometry . 

The specific speed of a pelton wheel depends on the ratio of jet diameter 
(the diameter at the centre of the bucket). If the hydraulic

efficiency of a pelton wheel is defined as the ratio of the power delivered 
at the nozzle entrance, then we can write.

(2.1)

 and 

The optimum value of the overall efficiency of a Pelton turbine depends both on
the values of the specific speed and the speed ratio. The Pelton wheels with a
single jet operate in the specific speed range of 4-16, and therefore the ratio D/d
lies between 6 to 26 as given by the Eq. (15.25b). A large value of D/d reduces
the rpm as well as the mechanical efficiency of the wheel. It is possible to

by choosing a lower value of D/d, but the

  

for smooth entry of the 

 

The specific speed of a pelton wheel depends on the ratio of jet diameter d and the 
(the diameter at the centre of the bucket). If the hydraulic 

efficiency of a pelton wheel is defined as the ratio of the power delivered P to the 
write. 

(2.1) 

The optimum value of the overall efficiency of a Pelton turbine depends both on 
the values of the specific speed and the speed ratio. The Pelton wheels with a 

16, and therefore the ratio D/d 
lies between 6 to 26 as given by the Eq. (15.25b). A large value of D/d reduces 
the rpm as well as the mechanical efficiency of the wheel. It is possible to 

the efficiency 
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will decrease because of the close spacing of buckets. The value of D/d is
normally kept between 14 and 16 to maintain high efficiency. The number of
buckets required to maintain
empirical relation. 

 
 
 

n(number

 
Govering of Pelton Turbine

 
First let us discuss what is meant by governing of turbines in general. When a
turbine drives an electrical generator or alternator, the primary requirement is
that the rotational speed of the shaft and hence that of the turbine rotor has to be
kept fixed. Otherwise the frequency of the electrical output will be altered. But
when the electrical load changes depending upon the demand, the speed of the
turbine changes automatically. This is because the external resisting torque on
the shaft is altered while the driving torque due to change of momentum in the
flow of fluid through the turbine remains the same. For example, when the load
is increased, the speed of the turbine decreases and 
speed is therefore maintained by adjusting the rate of energy input to the turbine
accordingly. This is usually accomplished
through the turbine- the flow in increased when the load is increased and the
flow is decreased when the load is decreased. This adjustment of flow with the
load is known as the governing

 
In case of a Pelton turbine, an additional requirement for its operation at the
condition of maximum efficiency

velocity has to be kept

is fixed. has to be fixed. Therefore
of the cross-sectional area, 

proportion to the change in the flow area keeping the jet velocity      same. This
is usually achieved by a spear valve in the nozzle (Figure 2.2a). Movement of
the spear and the axis of the nozzle changes the annular area between the spear
and the housing. The shape of the spear is such, that the fluid coalesces into a
circular jet and then the effect of the spear movement is to vary the diameter of
the jet. Deflectors are often used (Figure 2.2b) along with the spear valve to
prevent the serious water hammer problem due to a sudden reduction in the rate
of flow. These plates temporarily
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will decrease because of the close spacing of buckets. The value of D/d is
normally kept between 14 and 16 to maintain high efficiency. The number of

maintain optimum efficiency is usually fixed

n(number of buckets) = 
(2.2)

Turbine : 

First let us discuss what is meant by governing of turbines in general. When a
turbine drives an electrical generator or alternator, the primary requirement is
that the rotational speed of the shaft and hence that of the turbine rotor has to be
kept fixed. Otherwise the frequency of the electrical output will be altered. But

electrical load changes depending upon the demand, the speed of the
turbine changes automatically. This is because the external resisting torque on
the shaft is altered while the driving torque due to change of momentum in the

rbine remains the same. For example, when the load
is increased, the speed of the turbine decreases and vice versa . A constancy in
speed is therefore maintained by adjusting the rate of energy input to the turbine
accordingly. This is usually accomplished by changing the rate of fluid flow

the flow in increased when the load is increased and the
flow is decreased when the load is decreased. This adjustment of flow with the

governing of turbines. 

In case of a Pelton turbine, an additional requirement for its operation at the
efficiency is that the ration of bucket to

be kept at its optimum value of about 0.46. Hence, when

Therefore the control must be made by 
 A, of the jet so that  the flow rate changes

proportion to the change in the flow area keeping the jet velocity      same. This
is usually achieved by a spear valve in the nozzle (Figure 2.2a). Movement of
the spear and the axis of the nozzle changes the annular area between the spear
and the housing. The shape of the spear is such, that the fluid coalesces into a

then the effect of the spear movement is to vary the diameter of
the jet. Deflectors are often used (Figure 2.2b) along with the spear valve to
prevent the serious water hammer problem due to a sudden reduction in the rate

temporarily defect the jet so that the entire flow

  

will decrease because of the close spacing of buckets. The value of D/d is 
normally kept between 14 and 16 to maintain high efficiency. The number of 

fixed by the 

(2.2) 

First let us discuss what is meant by governing of turbines in general. When a 
turbine drives an electrical generator or alternator, the primary requirement is 
that the rotational speed of the shaft and hence that of the turbine rotor has to be 
kept fixed. Otherwise the frequency of the electrical output will be altered. But 

electrical load changes depending upon the demand, the speed of the 
turbine changes automatically. This is because the external resisting torque on 
the shaft is altered while the driving torque due to change of momentum in the 

rbine remains the same. For example, when the load 
. A constancy in 

speed is therefore maintained by adjusting the rate of energy input to the turbine 
by changing the rate of fluid flow 

the flow in increased when the load is increased and the 
flow is decreased when the load is decreased. This adjustment of flow with the 

In case of a Pelton turbine, an additional requirement for its operation at the 
to initial jet 

Hence, when U 

 a variation 
changes in 

proportion to the change in the flow area keeping the jet velocity      same. This 
is usually achieved by a spear valve in the nozzle (Figure 2.2a). Movement of 
the spear and the axis of the nozzle changes the annular area between the spear 
and the housing. The shape of the spear is such, that the fluid coalesces into a 

then the effect of the spear movement is to vary the diameter of 
the jet. Deflectors are often used (Figure 2.2b) along with the spear valve to 
prevent the serious water hammer problem due to a sudden reduction in the rate 

flow does not 
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reach the bucket; the spear valve may then be moved slowly to its new position 
to reduce the rate of flow in the pipe-line gradually. If the bucket width is too 
small in relation to the jet diameter, the fluid is not smoothly deflected by the 
buckets and, in consequence, much energy is dissipated in turbulence and the 
efficiency drops considerably. On the other hand, if the buckets are unduly 
large, the effect of friction on the surfaces is unnecessarily high. The optimum 
value of the ratio of bucket width to jet diameter has been found to vary 
between 4 and 5. 

 

 

Figure 
(a) Spear valve to alter jet area in a Pelton wheel 
(b) Jet deflected from bucket 

 

Limitation of a Pelton Turbine: 
 

The Pelton wheel is efficient and reliable when operating under large heads. To 
generate a given output power under a smaller head, the rate of flow through the 
turbine has to be higher which requires an increase in the jet diameter. The 
number of jets are usually limited to 4 or 6 per wheel. The increases in jet 
diameter in turn increases the wheel diameter. Therefore the machine becomes 
unduly large, bulky and slow-running. In practice, turbines of the reaction type 
are more suitable for lower heads. 



  Fundamentals of Fluid Mechanics  

75 

 

 

 

 

   Reaction Turbine Francis Turbine 

The principal feature of a reaction turbine that distinguishes it from an impulse 
turbine is that only a part of the total head available at the inlet to the turbine is 
converted to velocity head, before the runner is reached. Also in the reaction 
turbines the working fluid, instead of engaging only one or two blades, 
completely fills the passages in the runner. The pressure or static head of the 
fluid changes gradually as it passes through the runner along with the change in 
its kinetic energy based on absolute velocity due to the impulse action between 
the fluid and the runner. Therefore the cross-sectional area of flow through the 
passages of the fluid. A reaction turbine is usually well suited for low heads. A 
radial flow hydraulic turbine of reaction type was first developed by an 
American Engineer, James B. Francis (1815-92) and is named after him as the 
Francis turbine. The schematic diagram of a Francis turbine is shown in Fig. 
3.1 

 

Figure 3.1 A Francis turbine 
 

A Francis turbine comprises mainly the four components: 
 

(i) sprical casing, 
 

(ii) guide on stay vanes, 
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(iii) runner blades, 
 

(iv) draft-tube as shown in Figure 3.1 . 
 

Spiral Casing : Most of these machines have vertical shafts although some 
smaller machines of this type have horizontal shaft. The fluid enters from the 
penstock (pipeline leading to the turbine from the reservoir at high altitude) to a 
spiral casing which completely surrounds the runner. This casing is known as 
scroll casing or volute. The cross-sectional area of this casing decreases 
uniformly along the circumference to keep the fluid velocity constant in 
magnitude along its path towards the guide vane. 

 

Figure Spiral Casing 
 

This is so because the rate of flow along the fluid path in the volute decreases 
due to continuous entry of the fluid to the runner through the openings of the 
guide vanes or stay vanes. 

 
Guide or Stay vane: 

 
The basic purpose of the guide vanes or stay vanes is to convert a part of 
pressure energy of the fluid at its entrance to the kinetic energy and then to 
direct the fluid on to the runner blades at the angle appropriate to the design. 
Moreover, the guide vanes are pivoted and can be turned by a suitable 
governing mechanism to regulate the flow while the load changes. The guide 
vanes are also known as wicket gates. The guide vanes impart a tangential 
velocity and hence an angular momentum to the water before its entry to the 
runner. The flow in the runner of a Francis turbine is not purely radial but a 
combination of radial and tangential. The flow is inward, i.e. from the 
periphery towards the centre. The height of the runner depends upon the 
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specific speed. The height increases with the increase in the specific speed. The
main direction of flow change as water passes through the runner and is finally
turned into the axial direction

 
Draft tube: 

 
The draft tube is a conduit which connects the runner exit to the tail race where
the water is being finally discharged from the turbine. The primary function of
the draft tube is to reduce the velocity of the discharged water to minimize the
loss of kinetic energy at the outlet. This permits the turbine to be set above the
tail water without any 
understanding of the function
is very important for the purpose of its design. The purpose of providing a draft
tube will be better understood if we carefully study the net
across a reaction turbine. 

 
Net head across a reaction turbine and the purpose to providing a draft
tube . The effective head across any turbine is the difference between the head
at inlet to the machine and the head at outlet from it. A reaction turbine always
runs completely filled with the working fluid. The tube that connects the end of
the runner to the tail race is known as a draft tube and should completely to
filled with the working fluid flowing through it. The kinetic energy of the fluid
finally discharged into the tail race is wasted. A draft tube is made divergent so
as to reduce the velocity at outlet to a minimum. Therefore a draft tube is
basically a diffuser and shoul
walls of the tube to be limited to about 8 degree so as to prevent the flow
separation from the wall and to reduce accordingly the loss of energy in the
tube. Figure 3.3 shows a flow diagram from the reserv
to the tail race. 

 
The total head       at the entrance to the turbine can be found out by applying
the Bernoulli's equation between the free surface
to the turbine as 

 

 
or, 

 
where is the head lost due
reservoir and the turbine. Since the draft tube is a part of the turbine, the net
head across the turbine, for
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specific speed. The height increases with the increase in the specific speed. The
main direction of flow change as water passes through the runner and is finally

direction while entering the draft tube. 

The draft tube is a conduit which connects the runner exit to the tail race where
g finally discharged from the turbine. The primary function of

the draft tube is to reduce the velocity of the discharged water to minimize the
loss of kinetic energy at the outlet. This permits the turbine to be set above the

 appreciable drop of available head.
function of the draft tube in any reaction turbine,

is very important for the purpose of its design. The purpose of providing a draft
tube will be better understood if we carefully study the net available head

Net head across a reaction turbine and the purpose to providing a draft
. The effective head across any turbine is the difference between the head

at inlet to the machine and the head at outlet from it. A reaction turbine always
runs completely filled with the working fluid. The tube that connects the end of
the runner to the tail race is known as a draft tube and should completely to

working fluid flowing through it. The kinetic energy of the fluid
finally discharged into the tail race is wasted. A draft tube is made divergent so
as to reduce the velocity at outlet to a minimum. Therefore a draft tube is
basically a diffuser and should be designed properly with the angle between the
walls of the tube to be limited to about 8 degree so as to prevent the flow
separation from the wall and to reduce accordingly the loss of energy in the
tube. Figure 3.3 shows a flow diagram from the reservoir via a reaction turbine

at the entrance to the turbine can be found out by applying
equation between the free surface of the reservoir and the inlet

                                       (3.1)

(3.2)

due to friction in the pipeline connecting
reservoir and the turbine. Since the draft tube is a part of the turbine, the net

for the conversion of mechanical work, is

  

specific speed. The height increases with the increase in the specific speed. The 
main direction of flow change as water passes through the runner and is finally 

The draft tube is a conduit which connects the runner exit to the tail race where 
g finally discharged from the turbine. The primary function of 

the draft tube is to reduce the velocity of the discharged water to minimize the 
loss of kinetic energy at the outlet. This permits the turbine to be set above the 

head. A clear 
turbine, in fact, 

is very important for the purpose of its design. The purpose of providing a draft 
available head 

Net head across a reaction turbine and the purpose to providing a draft 
. The effective head across any turbine is the difference between the head 

at inlet to the machine and the head at outlet from it. A reaction turbine always 
runs completely filled with the working fluid. The tube that connects the end of 
the runner to the tail race is known as a draft tube and should completely to 

working fluid flowing through it. The kinetic energy of the fluid 
finally discharged into the tail race is wasted. A draft tube is made divergent so 
as to reduce the velocity at outlet to a minimum. Therefore a draft tube is 

d be designed properly with the angle between the 
walls of the tube to be limited to about 8 degree so as to prevent the flow 
separation from the wall and to reduce accordingly the loss of energy in the 

oir via a reaction turbine 

at the entrance to the turbine can be found out by applying 
of the reservoir and the inlet 

(3.1) 

(3.2) 

connecting the 
reservoir and the turbine. Since the draft tube is a part of the turbine, the net 

is the 
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difference of total head at inlet to the machine and the total head at discharge
from the draft tube at tail race

 

Figure 
 

Therefore, H = total head at

 

The pressures are defined
pressure. Section 2 and 3 in Figure 3.3 represent the exits from the runner and
the draft tube respectively. If the losses in the draft tube are neglected, then the
total head at 2 becomes equal

machine is either 
between 2 and 3 in consideration of flow,
tube, we can write. 

 

Since , both the terms
always negative, which implies that the static pressure at the outlet of the
runner is always below the
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difference of total head at inlet to the machine and the total head at discharge
race and is shown as H in Figure 3.3 

 Head across a reaction turbine 

at inlet to machine (1) - total head at discharge

                               (3.3)

  (3.4)

defined in terms of their values above the atmospheric
pressure. Section 2 and 3 in Figure 3.3 represent the exits from the runner and
the draft tube respectively. If the losses in the draft tube are neglected, then the

equal to that at 3. Therefore, the net head 

 or . Applying the Bernoull's
between 2 and 3 in consideration of flow, without losses, through the draft

                                     (3.5)

  (3.6)

terms in the bracket are positive and hence
negative, which implies that the static pressure at the outlet of the

the atmospheric pressure. Equation (3.1) also

  

difference of total head at inlet to the machine and the total head at discharge 

discharge (3) 

(3.3) 

(3.4) 

atmospheric 
pressure. Section 2 and 3 in Figure 3.3 represent the exits from the runner and 
the draft tube respectively. If the losses in the draft tube are neglected, then the 

 across the 

Bernoull's equation 
without losses, through the draft 

(3.5) 

(3.6) 

hence is 
negative, which implies that the static pressure at the outlet of the 

also shows 
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that the value of the suction

of the runner above the tail

energy of the fluid in the draft
should never fall below the 
temperature to avoid the problem
incorporation of a draft tube
race without any drop of available
the outlet of the runner. 

 
 

Runner of the Francis Turbine
 

The shape of the blades of a Francis runner is complex. The exact
depends on its specific speed. It is obvious from the equation of specific speed
that higher specific speed means lower head. This requires that the runner
should admit a comparatively
and at the same time the velocity of discharge at runner outlet should be small
to avoid cavitation. In a purely radial flow runner, as developed by James B.
Francis, the bulk flow is in the radial directio
tangential and radial at the
tangential component at the
a 90o turn after passing through the rotor for its inlet to the draft tube. Since
the flow area (area perpendicular to the radial direction) is small, there is a
limit to the capacity of this type of runner in keeping a low exit velocity. This
leads to the design of a mixed flow runner where water is turned from a radial
to an axial direction in the rotor itself. At the outlet of this type of runner, the
flow is mostly axial with negligible radial and tangential components. Because
of a large discharge area (are
of runner can pass a large amount of water with a low exit velocity from the
runner. The blades for a 
tangential or whirling component

zero . This is made
 

Figure 4.1 shows the velocity
a Francis turbine. Usually

tangential direction) remains
to that at the inlet to the draft

 
The Euler's equation for turbine
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suction pressure at runner outlet depends on z, 

tail race and , the decrease

draft tube. The value of this minimum pressure
 vapour pressure of the liquid at its operating
problem of cavitation. Therefore, we fine

tube allows the turbine runner to be set above
available head by maintaining a vacuum pressure

Turbine 

The shape of the blades of a Francis runner is complex. The exact
depends on its specific speed. It is obvious from the equation of specific speed
that higher specific speed means lower head. This requires that the runner
should admit a comparatively large quantity of water for a given power output
and at the same time the velocity of discharge at runner outlet should be small
to avoid cavitation. In a purely radial flow runner, as developed by James B.
Francis, the bulk flow is in the radial direction. To be more clear, the flow is

the inlet but is entirely radial with a 
the outlet. The flow, under the situation, has

turn after passing through the rotor for its inlet to the draft tube. Since
the flow area (area perpendicular to the radial direction) is small, there is a
limit to the capacity of this type of runner in keeping a low exit velocity. This

gn of a mixed flow runner where water is turned from a radial
to an axial direction in the rotor itself. At the outlet of this type of runner, the
flow is mostly axial with negligible radial and tangential components. Because

(area perpendicular to the axial direction), this
of runner can pass a large amount of water with a low exit velocity from the

 reaction turbine are always so shaped
component of velocity at the outlet becomes 

made to keep the kinetic energy at outlet a minimum.

velocity triangles at inlet and outlet of a typical
Usually the flow velocity (velocity perpendicular

remains constant throughout, i.e. and
draft tube. 

turbine [Eq.(1.2)] in this case reduces to 

  

 the height 

decrease in kinetic 

minimum pressure 
operating 

fine that the 
above the tail 

pressure at 

The shape of the blades of a Francis runner is complex. The exact shape 
depends on its specific speed. It is obvious from the equation of specific speed 
that higher specific speed means lower head. This requires that the runner 

large quantity of water for a given power output 
and at the same time the velocity of discharge at runner outlet should be small 
to avoid cavitation. In a purely radial flow runner, as developed by James B. 

n. To be more clear, the flow is 
 negligible 

has to make 
turn after passing through the rotor for its inlet to the draft tube. Since 

the flow area (area perpendicular to the radial direction) is small, there is a 
limit to the capacity of this type of runner in keeping a low exit velocity. This 

gn of a mixed flow runner where water is turned from a radial 
to an axial direction in the rotor itself. At the outlet of this type of runner, the 
flow is mostly axial with negligible radial and tangential components. Because 

a perpendicular to the axial direction), this type 
of runner can pass a large amount of water with a low exit velocity from the 

shaped that the 
 

minimum. 

typical blade of 
perpendicular to the 

and is equal 
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where, e is the energy transfer
inlet velocity triangle shown

 

 

and 
 

Substituting the values of 
into Eq. (4.1), we have 

 

Figure Velocity
 

The loss of kinetic energy 
neglecting friction, the blade
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(4.1)

transfer to the rotor per unit mass of the fluid.
shown in Fig.4.1 

  (4.2a)

(4.2b)

 and from Eqs. (4.2a) and (4.2b) respectively

                                  (4.3)

Velocity triangle for a Francis runner 

 per unit mass becomes equal to . Therefore
blade efficiency becomes 

  

(4.1) 

fluid. From the 

(4.2a) 

(4.2b) 

respectively 

(4.3) 

. Therefore 
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since 

 

 

The change in pressure energy of the fluid in the rotor can be found out by
subtracting the change in its kinetic energy from the total energy released.
Therefore, we can write for the

 
 

 
[since 

 
 
 

Using the expression of e from

 

The inlet blade angle     of

vane angle angle      from 
runner B/D, at blade inlet, depends
varies from 1/20 to 2/3. 

 
Expression for specific speed. The dimensional specific speed of a turbine,
can be written as 

 
 

 
Power generated P for a turbine can be

head H and hydraulic efficiency
 

 
Hence, it becomes 
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can be written
as 

The change in pressure energy of the fluid in the rotor can be found out by
subtracting the change in its kinetic energy from the total energy released.

for the degree of reaction. 

from Eq. (4.3), we have 

  (4.4)

of a Francis runner varies and 

 . The ratio of blade width to the diameter of
runner B/D, at blade inlet, depends upon the required specific speed and

Expression for specific speed. The dimensional specific speed of a turbine,

for a turbine can be expressed in terms of

efficiency as 

  

written 

The change in pressure energy of the fluid in the rotor can be found out by 
subtracting the change in its kinetic energy from the total energy released. 

(4.4) 

 the guide 

. The ratio of blade width to the diameter of 
upon the required specific speed and 

Expression for specific speed. The dimensional specific speed of a turbine, 

of available 
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Again, , 

 

Substituting   from Eq. (4.2b)
 
 

 
 

Available head H equals the
at the exit. Thus, 

 
 

since 
 

 
with the help of Eq. (4.3), it

 
 

 
or, 

 

Substituting the values of H

the expression   given by
 

 
Flow velocity at inlet 
as 

 
 

 
where B is the width of the runner
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                                     (4.5)

Eq. (4.2b) 

(4.6)

the head delivered by the turbine plus the 

  

it becomes 

(4.7)

H and N from Eqs (4.7) and (4.6) respectively

by Eq. (4.5), we get, 

 can be substituted from the equation of continuity

the runner at its inlet 

  

(4.5) 

(4.6) 

 head lost 

(4.7) 

respectively into 

continuity 
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Finally, the expression for 
 
 

 

For   a   Francis   turbine,   

like   have been described earlier. These variations cover a range of
specific speed between 50 and 400.
Francis Turbine. The figure is specifically shown in order to convey the size
and relative dimensions of 

 
KAPLAN TURBINE 

 
Higher specific speed corresponds to a lower head. This requires that the
runner should admit a comparatively large quantity of water. For a runner of
given diameter, the maximum
parallel to the axis. Such a machine is known as axial flow reaction turbine.
An Australian engineer, Vikton Kaplan first designed such a machine. The
machines in this family are

 

Figure
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   becomes, 

(4.8)

turbine,    the    variations    of    geometrical    parameters

have been described earlier. These variations cover a range of
between 50 and 400. Figure 4.2 shows an overview

Francis Turbine. The figure is specifically shown in order to convey the size
 a typical Francis Turbine to the readers. 

Higher specific speed corresponds to a lower head. This requires that the
runner should admit a comparatively large quantity of water. For a runner of

maximum flow rate is achieved when the
parallel to the axis. Such a machine is known as axial flow reaction turbine.
An Australian engineer, Vikton Kaplan first designed such a machine. The

are called Kaplan Turbines.(Figure 5.1) 

Figure A typical Kaplan Turbine 

  

(4.8) 

geometrical    parameters 

have been described earlier. These variations cover a range of 
an overview of a 

Francis Turbine. The figure is specifically shown in order to convey the size 
 

Higher specific speed corresponds to a lower head. This requires that the 
runner should admit a comparatively large quantity of water. For a runner of 

the flow is 
parallel to the axis. Such a machine is known as axial flow reaction turbine. 
An Australian engineer, Vikton Kaplan first designed such a machine. The 
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Development of Kaplan Runner
Francis Runner with Specific

 
Figure 5.2 shows in stages the change in the shape of a Francis runner with
the variation of specific speed. The first three types [Fig. 5.2 (a), (b) and (c)]
have, in order. The Francis runner (radial flow runner) at low, normal and
high specific speeds. As the specific speed increases, discharge becomes
more and more axial. The 
flow runner (radial flow at inlet axial flow at outlet) and is known as Dubs
runner which is mainly suited for high specific speeds. Figure
a propeller type runner with a less number of blades w
entirely axial (both at inlet and outlet). This type of runner is the most
suitable one for very high specific speeds and is known as Kaplan runner or
axial flow runner. 

 
From the inlet velocity triangle
Figs (5.2a to 5.2e), it is 

decreased in head) is accompanied

the flow velocity     at inlet increases allowing a large amount of fluid to
enter the turbine. The most important point to be noted in this context is that
the flow at inlet to all the runners, except the Kaplan one, is in radial and
tangential directions. Therefore, the inlet velocity triangles of those turbines
(Figure 5.2a to 5.2d) are

tangential directions, and
component of velocity. 

 
In case of a Kaplan runner,
directions. Therefore, the inlet velocity triangle in this case (Figure 30.2e) is
shown in a place containing

the flow velocity represents
tangential component of 
Therefore, the outlet velocity

all runners. However, the
runner, while it is the radial
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Runner from the Change in the Shape 
Specific Speed 

Figure 5.2 shows in stages the change in the shape of a Francis runner with
the variation of specific speed. The first three types [Fig. 5.2 (a), (b) and (c)]
have, in order. The Francis runner (radial flow runner) at low, normal and
high specific speeds. As the specific speed increases, discharge becomes
more and more axial. The fourth type, as shown in Fig.5.2 (d), is a mixed
flow runner (radial flow at inlet axial flow at outlet) and is known as Dubs
runner which is mainly suited for high specific speeds. Figure 5.2(e) shows
a propeller type runner with a less number of blades where the flow is
entirely axial (both at inlet and outlet). This type of runner is the most
suitable one for very high specific speeds and is known as Kaplan runner or

From the inlet velocity triangle for each of the five runners, as sh
 found that an increase in specific speed

accompanied by a reduction in inlet velocity   

at inlet increases allowing a large amount of fluid to
enter the turbine. The most important point to be noted in this context is that
the flow at inlet to all the runners, except the Kaplan one, is in radial and
tangential directions. Therefore, the inlet velocity triangles of those turbines

are shown in a plane containing the radial

and hence the flow velocity represents the

In case of a Kaplan runner, the flow at inlet is in axial and tangential
directions. Therefore, the inlet velocity triangle in this case (Figure 30.2e) is

containing the axial and tangential directions, and

represents the axial component of velocity
 velocity is almost nil at outlet of all

velocity triangle (Figure 5.2f) is identical in 

the exit velocity is axial in Kaplan and
radial one in all other runners. 

  

 of 

Figure 5.2 shows in stages the change in the shape of a Francis runner with 
the variation of specific speed. The first three types [Fig. 5.2 (a), (b) and (c)] 
have, in order. The Francis runner (radial flow runner) at low, normal and 
high specific speeds. As the specific speed increases, discharge becomes 

fourth type, as shown in Fig.5.2 (d), is a mixed 
flow runner (radial flow at inlet axial flow at outlet) and is known as Dubs 

5.2(e) shows 
here the flow is 

entirely axial (both at inlet and outlet). This type of runner is the most 
suitable one for very high specific speeds and is known as Kaplan runner or 

five runners, as shown in 
speed (or a 

velocity    . But 

at inlet increases allowing a large amount of fluid to 
enter the turbine. The most important point to be noted in this context is that 
the flow at inlet to all the runners, except the Kaplan one, is in radial and 
tangential directions. Therefore, the inlet velocity triangles of those turbines 

radial ant 

the radial 

in axial and tangential 
directions. Therefore, the inlet velocity triangle in this case (Figure 30.2e) is 

and hence 

velocity .The 
all runners. 

 shape of 

and Dubs 
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(a) Francis

(b) Francis 

(c) Francis
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Francis runner for low specific speeds 

 runner for normal specific speeds 

Francis runner for high specific speeds 

(d) Dubs runner 

(e) Kalpan runner 
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(f) For allreaction
(Francis as well
Kaplan) runners

 
 

 

Fig. 5.2 Evolution
 
 
 

Figure 5.3 shows a schematic diagram of propeller or Kaplan turbine. The
function of the guide vane is same as in case of Francis turbine. Between the
guide vanes and the runner, the fluid in a propeller turbine turns through a
right-angle into the axial direction and then passes through the runner. The
runner usually has four or six blades and closely resembles a ship's propeller.
Neglecting the frictional effects, the flow approaching the runner blades can
be considered to be a free
proportional to radius, while on the other hand, the blade velocity is directly
proportional to the radius. To take care of this d
fluid velocity and the blade velocity with the changes in radius, the blades are
twisted. The angle with axis
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allreaction 
well as 

runners 

Outlet velocity triangle 
Evolution of Kaplan runner form Francis one 

Figure 5.3 shows a schematic diagram of propeller or Kaplan turbine. The
function of the guide vane is same as in case of Francis turbine. Between the
guide vanes and the runner, the fluid in a propeller turbine turns through a

angle into the axial direction and then passes through the runner. The
runner usually has four or six blades and closely resembles a ship's propeller.

nal effects, the flow approaching the runner blades can
free vortex with whirl velocity being

proportional to radius, while on the other hand, the blade velocity is directly
proportional to the radius. To take care of this different relationship of the
fluid velocity and the blade velocity with the changes in radius, the blades are

axis is greater at the tip that at the root. 

  

 

Figure 5.3 shows a schematic diagram of propeller or Kaplan turbine. The 
function of the guide vane is same as in case of Francis turbine. Between the 
guide vanes and the runner, the fluid in a propeller turbine turns through a 

angle into the axial direction and then passes through the runner. The 
runner usually has four or six blades and closely resembles a ship's propeller. 

nal effects, the flow approaching the runner blades can 
being inversely 

proportional to radius, while on the other hand, the blade velocity is directly 
ifferent relationship of the 

fluid velocity and the blade velocity with the changes in radius, the blades are 
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Fig. A
 

Different types of draft tubes incorporated in reaction turbines 
tube is an integral part of a reaction turbine. Its principle has been explained
earlier. The shape of draft tube plays an important role especially for high
specific speed turbines, since the efficient recovery of kinetic energy at
runner outlet depends mainly
are discussed as follows. 

 
Straight divergent tube [Fig.
frustum of a cone. It is usually
Francis turbine. The cone angle is restricted to 8 0 to avoid the losses due to
separation. The tube must discharge sufficiently
The maximum efficiency of
tube improves speed regulation

 
Simple elbow type (Fig. 5.4b) 
made small in order to keep
The exit diameter of draft tube should be as large as possible to recover
kinetic energy at runner's outlet. The

Fundamentals of Fluid Mechanics 

A propeller of Kaplan turbine 

Different types of draft tubes incorporated in reaction turbines 
tube is an integral part of a reaction turbine. Its principle has been explained
earlier. The shape of draft tube plays an important role especially for high

, since the efficient recovery of kinetic energy at
mainly on it. Typical draft tubes, employed in

[Fig. 5.4(a)] The shape of this tube is that of
usually employed for low specific speed, vertical

Francis turbine. The cone angle is restricted to 8 0 to avoid the losses due to
discharge sufficiently low under tail water
of this type of draft tube is 90%. This type

regulation of falling load. 

5.4b) The vertical length of the draft tube should
keep down the cost of excavation, particularly

The exit diameter of draft tube should be as large as possible to recover
outlet. The cone angle of the tube is again 

  

 

Different types of draft tubes incorporated in reaction turbines The draft 
tube is an integral part of a reaction turbine. Its principle has been explained 
earlier. The shape of draft tube plays an important role especially for high 

, since the efficient recovery of kinetic energy at 
in practice, 

that of 
vertical shaft 

Francis turbine. The cone angle is restricted to 8 0 to avoid the losses due to 
water level. 

is 90%. This type of draft 

should be 
particularly in rock. 

The exit diameter of draft tube should be as large as possible to recover 
 fixed 
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from the consideration of losses due to flow separation. Therefore, the draft
tube must be bent to keep its definite length. Simple elbow type draft tube
will serve such a purpose. Its efficiency is, however, low(about 60%). This
type of draft tube turns the 
with a minimum depth of excavation. Sometimes, the transition from a
circular section in the vertical portion to a rectangular section in the
horizontal part (Fig. 5.4c) is incorporated in the design to have a higher
efficiency of the draft tube. The horizontal portion of the dr
generally inclined upwards
race and to prevent entry of

 

Figure 
 
 

Cavitation in reaction turbines
 

If the pressure of a liquid in course of its flow becomes equal to its vapour
pressure at the existing temperature, then the liquid starts boiling and the
pockets of vapour are formed which create vapour locks to the flow and the
flow is stopped. The phenomenon
cavitation, the minimum pressure in the passage of a liquid flow, should
always be more than the
temperature. In a reaction turbine, the point of minimum pressure is u
at the outlet end of the runner blades, i.e at the inlet to the draft tube. For the
flow between such a point and the final discharge into the trail race (where
the pressure is atmospheric), the Bernoulli's
consideration of the velocity
negligibly small, as 

 

where, and represent
the outlet of the runner (or
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from the consideration of losses due to flow separation. Therefore, the draft
tube must be bent to keep its definite length. Simple elbow type draft tube
will serve such a purpose. Its efficiency is, however, low(about 60%). This

 water from the vertical to the horizontal direction
excavation. Sometimes, the transition from a

circular section in the vertical portion to a rectangular section in the
horizontal part (Fig. 5.4c) is incorporated in the design to have a higher
efficiency of the draft tube. The horizontal portion of the draft tube is

upwards to lead the water gradually to the level of
of air from the exit end. 

 Different types of draft tubes 

turbines 

If the pressure of a liquid in course of its flow becomes equal to its vapour
pressure at the existing temperature, then the liquid starts boiling and the
pockets of vapour are formed which create vapour locks to the flow and the

phenomenon is known as cavitation. 
cavitation, the minimum pressure in the passage of a liquid flow, should

the vapour pressure of the liquid at the
temperature. In a reaction turbine, the point of minimum pressure is u
at the outlet end of the runner blades, i.e at the inlet to the draft tube. For the
flow between such a point and the final discharge into the trail race (where
the pressure is atmospheric), the Bernoulli's equation can be written, in

velocity at the discharge from draft tube

  (6.1)

represent the static pressure and velocity of the
(or at the inlet to the draft tube). The larger the

  

from the consideration of losses due to flow separation. Therefore, the draft 
tube must be bent to keep its definite length. Simple elbow type draft tube 
will serve such a purpose. Its efficiency is, however, low(about 60%). This 

direction 
excavation. Sometimes, the transition from a 

circular section in the vertical portion to a rectangular section in the 
horizontal part (Fig. 5.4c) is incorporated in the design to have a higher 

aft tube is 
of the tail 

If the pressure of a liquid in course of its flow becomes equal to its vapour 
pressure at the existing temperature, then the liquid starts boiling and the 
pockets of vapour are formed which create vapour locks to the flow and the 

 To avoid 
cavitation, the minimum pressure in the passage of a liquid flow, should 

the working 
temperature. In a reaction turbine, the point of minimum pressure is usually 
at the outlet end of the runner blades, i.e at the inlet to the draft tube. For the 
flow between such a point and the final discharge into the trail race (where 

equation can be written, in 
tube to be 

(6.1) 

the liquid at 
larger the value 
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of , the smaller is the 

occur. The term in Eq. (6.1) represents the loss of head due to friction in
the draft tube and z is the

surface. For cavitation not
of the liquid at the working

 
An important parameter in the context of cavitation is the available suction
head (inclusive of both static and dynamic heads) at exit from the turbine
and is usually referred to as the net positive suction head 'NPSH' which is
defined as 

 

with the help of Eq. (6.1) 
in the draft tube , Eq.

 

A useful design parameter
the German Engineer Dietrich Thoma, who first introduced the concept) is
defined as 

 

For a given machine, operating

parameter known as critical

 

Therefore, for cavitaion not
 

If either z or H is increased,     is reduced. To determine whether cavitation
is likely to occur in a particular

calculated. When the value
particular design of turbine
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 value of and the cavitation is more 

in Eq. (6.1) represents the loss of head due to friction in
the height of the turbine runner above the tail

not to occur where is the vapour pressure
working temperature. 

An important parameter in the context of cavitation is the available suction
head (inclusive of both static and dynamic heads) at exit from the turbine
and is usually referred to as the net positive suction head 'NPSH' which is

  (6.2)

 and in consideration of negligible frictional
Eq. (6.2) can be written as 

  (6.3)

A useful design parameter known as Thoma's Cavitation Parameter (after
the German Engineer Dietrich Thoma, who first introduced the concept) is

                           (6.4)

operating at its design condition, another useful

critical cavitaion parameter is define as 

                                    (6.5)

not to occur (since, 

is increased,     is reduced. To determine whether cavitation
particular installation, the value of may be

value of is greater than the value of
turbine cavitation is not expected to occur. 

  

 likely to 

in Eq. (6.1) represents the loss of head due to friction in 
tail water 

is the vapour pressure 

An important parameter in the context of cavitation is the available suction 
head (inclusive of both static and dynamic heads) at exit from the turbine 
and is usually referred to as the net positive suction head 'NPSH' which is 

(6.2) 

frictional losses 

(6.3) 

known as Thoma's Cavitation Parameter (after 
the German Engineer Dietrich Thoma, who first introduced the concept) is 

(6.4) 

seful 

(6.5) 

is increased,     is reduced. To determine whether cavitation 
be 

of for a 
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In practice, the value of    
the turbine above tail water
parameter of increases with an increase in the specific speed of the turbine.
Hence, turbines having higher specific speed must be installed closer to the
tail water level. 

 
 

Performance Characteristics
 

It is not always possible in practice, although desirable, to run a machine at
its maximum efficiency due to c
it becomes important to
conditions for which the efficiency is less than the maximum. It is more
useful to plot the basic dimensionless performance parameters (Fig. 6.1) a
derived earlier from the similarity principles of fluid machines. Thus one set
of curves, as shown in Fig. 6.1, is applicable not just to the conditions of the
test, but to any machine in the same homologous series under any altered
conditions. 

 

Figure performance
reaction turbine

 
Figure 6.2 is one of the
different reaction turbines 
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In practice, the value of     is used to determine the maximum elevation of
water surface for cavitation to be avoided.

parameter of increases with an increase in the specific speed of the turbine.
Hence, turbines having higher specific speed must be installed closer to the

Characteristics of Reaction Turbine 

It is not always possible in practice, although desirable, to run a machine at
maximum efficiency due to changes in operating parameters. Therefore,

to know the performance of the machine
conditions for which the efficiency is less than the maximum. It is more
useful to plot the basic dimensionless performance parameters (Fig. 6.1) a
derived earlier from the similarity principles of fluid machines. Thus one set
of curves, as shown in Fig. 6.1, is applicable not just to the conditions of the
test, but to any machine in the same homologous series under any altered

performance characteristics of a 
turbine (in dimensionless parameters) 

the typical plots where variation in efficiency
 with the rated power is shown. 

  

is used to determine the maximum elevation of 
avoided. The 

parameter of increases with an increase in the specific speed of the turbine. 
Hence, turbines having higher specific speed must be installed closer to the 

It is not always possible in practice, although desirable, to run a machine at 
in operating parameters. Therefore, 

machine under 
conditions for which the efficiency is less than the maximum. It is more 
useful to plot the basic dimensionless performance parameters (Fig. 6.1) as 
derived earlier from the similarity principles of fluid machines. Thus one set 
of curves, as shown in Fig. 6.1, is applicable not just to the conditions of the 
test, but to any machine in the same homologous series under any altered 

efficiency of 
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Figure Variation
 
 

Comparison of Specific Speeds
 

Specific speeds and their ranges
turbines have already been
of efficiencies with the dimensionless specific speed of different hydraulic
turbines. The choice of a hydraulic turbine for a given purpose depends
upon the matching of its specific speed corresponding to maximum
efficiency with the required specific spee
parameters, namely, N (rotational

 

Figure Variation of
turbines 
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Variation of efficiency with load 

Speeds of Hydraulic Turbines 

ranges of variation for different types of hydraulic
been discussed earlier. Figure 7.1 shows the variation

of efficiencies with the dimensionless specific speed of different hydraulic
turbines. The choice of a hydraulic turbine for a given purpose depends
upon the matching of its specific speed corresponding to maximum
efficiency with the required specific speed determined from the operating

(rotational speed), p (power) and H(available

of efficiency with specific speed for hydraulic

  

hydraulic 
variation 

of efficiencies with the dimensionless specific speed of different hydraulic 
turbines. The choice of a hydraulic turbine for a given purpose depends 
upon the matching of its specific speed corresponding to maximum 

d determined from the operating 
(available head). 

hydraulic 
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Pumps 
 

A pump is a device where mechanical energy is transferred from the rotor to the
fluid by the principle of fluid motion through it. The energy of the fluid can be
sensed from the pressur and velocity of the fluid at the delivery end of
pump. Therefore, it is essentially a turbine in reverse. Like turbines, pumps are
classified according to the main direction of fluid path through them like (i)
radial flow or centrifugal, (ii)

 
Centrifugal Pumps 

 
The pumps employing centrifugal effects
been in use for more than a century.The centrifugal pump, by its principle, is
converse of the Francis turbine. The flow is radially outward, and the hence the
fluid gains in centrifugal head while flowing through it. Because of certain
inherent advantages,such as compactness, smooth and uniform flow, low initial
cost and high efficiency even at low heads, centrifugal pumps are used in almost
all pumping systems. However, before considering the operation of a pump in
detail, a general pumping system

 
General Pumping System and

 
The word pumping, referred to a hydraulic system commonly implies to convey
liquid from a low to a high reservoir. Such a pumping system, in general, is
shown in Fig. 33.1. At any point in the system, the elevation or potential head is
measured from a fixed reference
comprises pressure head, velocity

reservoir, the total head at the free surface is    
the free surface above the
at A are zero. Similarly the total

is ( ) and is equal to
above the reference datum. 

 
The variation of total head 

Fig. 33.2. The liquid enters the intake pipe causing a head loss for which the
total energy line drops to point 
entrance to intake pipe. The 
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A pump is a device where mechanical energy is transferred from the rotor to the
fluid by the principle of fluid motion through it. The energy of the fluid can be
sensed from the pressur and velocity of the fluid at the delivery end of

it is essentially a turbine in reverse. Like turbines, pumps are
classified according to the main direction of fluid path through them like (i)

(ii) axial flow and (iii) mixed flow types. 

centrifugal effects for increasing fluid pressure have
been in use for more than a century.The centrifugal pump, by its principle, is
converse of the Francis turbine. The flow is radially outward, and the hence the
fluid gains in centrifugal head while flowing through it. Because of certain
inherent advantages,such as compactness, smooth and uniform flow, low initial
cost and high efficiency even at low heads, centrifugal pumps are used in almost

However, before considering the operation of a pump in
system is discussed as follows. 

and the Net Head Developed by a Pump

The word pumping, referred to a hydraulic system commonly implies to convey
id from a low to a high reservoir. Such a pumping system, in general, is

shown in Fig. 33.1. At any point in the system, the elevation or potential head is
reference datum line. The total head at
velocity head and elevation head. For the lower

reservoir, the total head at the free surface is     and is equal to the elevation of
the datum line since the velocity and static

total head at the free surface in the higher

to the elevation of the free surface of the
 

 as the liquid flows through the system is

Fig. 33.2. The liquid enters the intake pipe causing a head loss for which the
total energy line drops to point B corresponding to a location just after the

 total head at B can be written as 

  

A pump is a device where mechanical energy is transferred from the rotor to the 
fluid by the principle of fluid motion through it. The energy of the fluid can be 
sensed from the pressur and velocity of the fluid at the delivery end of the 

it is essentially a turbine in reverse. Like turbines, pumps are 
classified according to the main direction of fluid path through them like (i) 

pressure have 
been in use for more than a century.The centrifugal pump, by its principle, is 
converse of the Francis turbine. The flow is radially outward, and the hence the 
fluid gains in centrifugal head while flowing through it. Because of certain 
inherent advantages,such as compactness, smooth and uniform flow, low initial 
cost and high efficiency even at low heads, centrifugal pumps are used in almost 

However, before considering the operation of a pump in 

Pump 

The word pumping, referred to a hydraulic system commonly implies to convey 
id from a low to a high reservoir. Such a pumping system, in general, is 

shown in Fig. 33.1. At any point in the system, the elevation or potential head is 
at any point 
lower 

and is equal to the elevation of 
static pressure 

higher reservoir 

the reservoir 

is shown in 

Fig. 33.2. The liquid enters the intake pipe causing a head loss for which the 
corresponding to a location just after the 
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As the fluid flows from the intake to the inlet
the total head drops further 

other losses equivalent to . The fluid then enters the pump and gains energy
imparted by the moving rotor of the pump. This raises the total head of the fluid
to a point D (Figure 33.2) at

 
In course of flow from the pump

losses account for a total 

loss     occurs when the liquid enters the upper reservoir, bringing the total heat
at point F (Figure 33.2) to that at the free surface of the upper reservoir. If the
total heads are measured at the inl
standard pump test, then 

 

Figure
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from the intake to the inlet flange of the pump at elevation
 to the point C (Figure 33.2) due to pipe friction

other losses equivalent to . The fluid then enters the pump and gains energy
imparted by the moving rotor of the pump. This raises the total head of the fluid

33.2) at the pump outlet (Figure 33.1). 

pump outlet to the upper reservoir, friction

 head loss or       down to a point E . At

loss     occurs when the liquid enters the upper reservoir, bringing the total heat
(Figure 33.2) to that at the free surface of the upper reservoir. If the

total heads are measured at the inlet and outlet flanges respectively, as done in a

Figure A general pumping system 

  

flange of the pump at elevation 
friction and 

other losses equivalent to . The fluid then enters the pump and gains energy 
imparted by the moving rotor of the pump. This raises the total head of the fluid 

friction and other 

At E an exit 

loss     occurs when the liquid enters the upper reservoir, bringing the total heat 
(Figure 33.2) to that at the free surface of the upper reservoir. If the 

et and outlet flanges respectively, as done in a 
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Figure Change

 
Total inlet head to the pump =

Total outlet head of the pump

where and are the velocities
 

Therefore, the total head developed
 

 
The head developed H is termed

inlet and outlet of the pump 
developed or manometric head 
head across the pump which

connected between the inlet 

) is so small in comparison 
surprising o find that the static pressure head across the pump is often used to
describe the total head developed

the two levels in the reservoirs      

Relationship between     , the static head and 
found   out   by   applying  
between D and F (Figure 33.1)
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Change of head in a pumping system 

Total inlet head to the pump = 

pump = 

velocities in suction and delivery pipes respectively.

developed by the pump, 

             (33.1) 

termed as manometric head . If the pipes connected

 are of same diameter, and therefore the head
developed or manometric head H is simply the gain in piezometric

which could have been recorded by a manometer

 and outlet flanges of the pump. In practice,

 to that it is ignored. It is therefore
surprising o find that the static pressure head across the pump is often used to

developed by the pump. The vertical distance

reservoirs       is known as static head or 

, the static head and H , the head developed can be
applying   Bernoulli's   equation    between A 

33.1) as follows: 

(33.2)

  

respectively. 

 

connected to 

and therefore the head 
is simply the gain in piezometric pressure 

manometer 

practice, ( 

therefore not 
surprising o find that the static pressure head across the pump is often used to 

distance between 

 static lift. 

, the head developed can be 
A and C and 

33.2) 



  Fundamentals

95 

 

 

 

Between D and F , 
 
 

 

 

substituting from Eq. (33.2) into Eq. (33.3), and then with the help of Eq.
(33.1), 

 
we can write 

 
 

 
Therefore, we have, the total head developed by the pump = static head + sum
of all the losses. 

 
The simplest from of a centrifugal pump is shown in Figure 33.3. It consists of
three important parts: (i) the rotor, usually called as impeller, (ii) the volute
casing and (iii) the diffuser ring. The
curved blades standing out vertically from the face of the disc.
may be single sided (Figure 33.4a) or doublesided (Figure 33.4b). A double
sided impeller has a relatively

 

Figure
 

The tips of the blades are
shrouded blades (Figure 33.4c), otherwise the blade tips are left open and the
casing of the pump itself forms the solid outer wall of the blade passages. The
advantage of the shrouded 
the blade tips from one passage

Fundamentals of Fluid Mechanics 

(33.3)

from Eq. (33.2) into Eq. (33.3), and then with the help of Eq.

  (33.4)

Therefore, we have, the total head developed by the pump = static head + sum

The simplest from of a centrifugal pump is shown in Figure 33.3. It consists of
three important parts: (i) the rotor, usually called as impeller, (ii) the volute
casing and (iii) the diffuser ring. The impeller is a rotating solid disc with
curved blades standing out vertically from the face of the disc. The impeller
may be single sided (Figure 33.4a) or doublesided (Figure 33.4b). A double

relatively small flow capacity. 

Figure A centrifugal pump 

are sometimes covered by another flat disc
shrouded blades (Figure 33.4c), otherwise the blade tips are left open and the
casing of the pump itself forms the solid outer wall of the blade passages. The

 blade is that flow is prevented from leaking
passage to another. 

  

(33.3) 

from Eq. (33.2) into Eq. (33.3), and then with the help of Eq. 

(33.4) 

Therefore, we have, the total head developed by the pump = static head + sum 

The simplest from of a centrifugal pump is shown in Figure 33.3. It consists of 
three important parts: (i) the rotor, usually called as impeller, (ii) the volute 

impeller is a rotating solid disc with 
The impeller 

may be single sided (Figure 33.4a) or doublesided (Figure 33.4b). A double 

disc to give 
shrouded blades (Figure 33.4c), otherwise the blade tips are left open and the 
casing of the pump itself forms the solid outer wall of the blade passages. The 

leaking across 
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(a) Single sided 
impeller 

Figure Types
 
 
 

As the impeller rotates, the fluid is drawn into the blade passage at the impeller
eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters
the impeller with very little whirl or tangential component of velocity and flows
outwards in the direction of the blades. The fluid receives energy from the
impeller while flowing through it and is discharged with increased pressure and
velocity into the casing. To convert the kinetic energy or fluid at the impeller
outlet gradually into pressure energy, diffuser blades mounted on a diffuser ring
are used. 

 
The stationary blade passages so formed have an increasing cross
which reduces the flow velocity and hence increases the static pressure of the
fluid. Finally, the fluid move
which is a passage of gradually increasing cross
reduce the velocity of fluid and to convert some of the velocity head into static
head. Sometimes pumps have

 
Figure 34.1 shows an impeller of a centrifugal pump with the velocity triangles
drawn at inlet and outlet. The blades are curved between the inlet and outlet
radius. A particle of fluid moves along

Fundamentals of Fluid Mechanics 

  

(b) Double sided 
impeller 

(c) Shrouded impeller

Types of impellers in a centrifugal pump 

As the impeller rotates, the fluid is drawn into the blade passage at the impeller
eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters
the impeller with very little whirl or tangential component of velocity and flows

s in the direction of the blades. The fluid receives energy from the
impeller while flowing through it and is discharged with increased pressure and
velocity into the casing. To convert the kinetic energy or fluid at the impeller

sure energy, diffuser blades mounted on a diffuser ring

The stationary blade passages so formed have an increasing cross-sectional area
which reduces the flow velocity and hence increases the static pressure of the
fluid. Finally, the fluid moves from the diffuser blades into the volute casing
which is a passage of gradually increasing cross-section and also serves to
reduce the velocity of fluid and to convert some of the velocity head into static

have only volute casing without any diffuser.

Figure 34.1 shows an impeller of a centrifugal pump with the velocity triangles
drawn at inlet and outlet. The blades are curved between the inlet and outlet

moves along the broken curve shown in Figure

  

 

impeller 

As the impeller rotates, the fluid is drawn into the blade passage at the impeller 
eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters 
the impeller with very little whirl or tangential component of velocity and flows 

s in the direction of the blades. The fluid receives energy from the 
impeller while flowing through it and is discharged with increased pressure and 
velocity into the casing. To convert the kinetic energy or fluid at the impeller 

sure energy, diffuser blades mounted on a diffuser ring 

sectional area 
which reduces the flow velocity and hence increases the static pressure of the 

s from the diffuser blades into the volute casing 
section and also serves to 

reduce the velocity of fluid and to convert some of the velocity head into static 
diffuser. 

Figure 34.1 shows an impeller of a centrifugal pump with the velocity triangles 
drawn at inlet and outlet. The blades are curved between the inlet and outlet 

Figure 34.1. 
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Figure Velocity

 
Let      be the angle made by the blade at inlet, with the tangent to the inlet

radius, while is the blade angle

absolute velocities of fluid at inlet an outlet respectively, while     
the relative velocities (with
respectively. Therefore, 

 
Work done

weight
 

A centrifugal pump rarely
therefore approaches the impeller without appreciable whirl and so the inlet
angle of the blades is designed to produce
inlet (as shown in Fig. 34.1).

impeller was designed, the direction of relative velocity    
with that of a blade. Consequently,
entering the impeller. In addition,
the inlet pipe, thus causing
impeller. However, considering

whirl velocity       and accordingly
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Velocity triangles for centrifugal pump 
Impeller 

be the angle made by the blade at inlet, with the tangent to the inlet

angle with the tangent at outlet. and are the

absolute velocities of fluid at inlet an outlet respectively, while      and       are
(with respect to blade velocity) at inlet 

done on the fluid per unit 
weight = 

(34.1)

rarely has any sort of guide vanes at inlet.
therefore approaches the impeller without appreciable whirl and so the inlet

designed to produce a right-angled velocity triangle
34.1). At conditions other than those for 

impeller was designed, the direction of relative velocity     does not coincide
Consequently, the fluid changes direction abruptly on

addition, the eddies give rise to some back
causing fluid to have some whirl before entering

considering the operation under design conditions,

accordingly the inlet angular momentum of

  

be the angle made by the blade at inlet, with the tangent to the inlet 

the 

and       are 
 and outlet 

(34.1) 

inlet. The fluid 
therefore approaches the impeller without appreciable whirl and so the inlet 

velocity triangle at 
 which the 

does not coincide 
the fluid changes direction abruptly on 

back flow into 
entering the 

conditions, the inlet 

of the fluid 
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entering the impeller is set to
 
 

Work done on the
 

We see from this equation that the work done is independent of the inlet radius.
The difference in total head

always less than the  quantity
eddies due to friction. 

 
The ratio of manometric head 

fluid (usually known

efficiency . It represents the effectiveness of the pump in increasing the total
energy of the fluid from the
can write 

 

The overall efficiency    of a
 

where, Q is the volume flow
shaft power, i.e. the input power

exceeds because of
parts. Thus a mechanical efficiency is

 

so that 
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to zero. Therefore, Eq. (34.1) can be written

the fluid per unit weight = (34.2)

We see from this equation that the work done is independent of the inlet radius.
head across the pump known as manometric

the  quantity because of the energy dissipated

The ratio of manometric head H and the work head imparted by the rotor on the

known as Euler head) is termed as manometric

efficiency . It represents the effectiveness of the pump in increasing the total
fluid from the energy given to it by the impeller. Therefore,

  (34.3)

a pump is defined as 

  (34.4)

flow rate of the fluid through the pump, and
power to the shaft. The energy required at

of friction in the bearings and other 
efficiency is defined as 

  (34.5)

  

written as 

(34.2) 

We see from this equation that the work done is independent of the inlet radius. 
manometric head, is 

dissipated in 

and the work head imparted by the rotor on the 

manometric 

efficiency . It represents the effectiveness of the pump in increasing the total 
Therefore, we 

(34.3) 

(34.4) 

and P is the 
at the shaft 

 mechanical 

(34.5) 

(34.6) 
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Slip Factor 
 

Under certain circumstances, the angle at which the fluid leaves the impeller
may not be the same as the

known as fluid slip, which
component of fluid velocity at impeller outlet. One possible explanation for slip
is given as follows. 

 
In course of flow through the impeller passage, there occurs a difference in
pressure and velocity between the leading and trailing faces of the impeller
blades. On the leading face of a blade there is relatively a high pressure and low
velocity, while on the trailing face, the pressure is lower and hence the velocity
is higher. This results in a circulation around the blade and a non
velocity distribution at any 

this situation, changes from
as shown in Figure 34.2 Therefore

outlet      is reduced to      

and the difference is defined
 

 

Figure Slip and velocit

 
With the application of slip factor ,

(Euler head) becomes 
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Under certain circumstances, the angle at which the fluid leaves the impeller
the actual blade angle. This is due to a phenomenon

which finally results in a reduction in the
component of fluid velocity at impeller outlet. One possible explanation for slip

In course of flow through the impeller passage, there occurs a difference in
pressure and velocity between the leading and trailing faces of the impeller
blades. On the leading face of a blade there is relatively a high pressure and low
velocity, while on the trailing face, the pressure is lower and hence the velocity

in a circulation around the blade and a non
 radius. The mean direction of flow at outlet,

from the blade angle at outlet     to a different
as shown in Figure 34.2 Therefore the tangential velocity component

is reduced to       , as shown by the velocity triangles in Figure 34.2,

defined as the slip. The slip factor is defined as 

Figure Slip and velocity in the impeller blade passage of a
centrifugal pump 

With the application of slip factor , the work head imparted to

 . The typical values of slip factor

  

Under certain circumstances, the angle at which the fluid leaves the impeller 
phenomenon 

the tangential 
component of fluid velocity at impeller outlet. One possible explanation for slip 

In course of flow through the impeller passage, there occurs a difference in 
pressure and velocity between the leading and trailing faces of the impeller 
blades. On the leading face of a blade there is relatively a high pressure and low 
velocity, while on the trailing face, the pressure is lower and hence the velocity 

in a circulation around the blade and a non-uniform 
outlet, under 

different angle 
component at 

, as shown by the velocity triangles in Figure 34.2, 

 

y in the impeller blade passage of a 

to the fluid 

factor lie in the 
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region of 0.9. 
 

Losses in a Centrifugal Pump

• Mechanical friction power
parts in the bearing and stuffing

 
• Disc friction power loss due to friction between the rotating faces of the
impeller (or disc) and the liquid.

 
• Leakage and recirculation power loss. This is due to loss of liquid from the
pump and recirculation of the liquid in the impeller. The pressure difference
between impeller tip and eye can cause a recirculation of a small volume of
liquid, thus reducing the flow rate at outlet of the impeller as shown in Fig.
(34.3). 

 

Figure Leakage and recirculation

Fundamentals of Fluid Mechanics 

Pump 

power loss due to friction between the fixed and
stuffing boxes. 

Disc friction power loss due to friction between the rotating faces of the
liquid. 

Leakage and recirculation power loss. This is due to loss of liquid from the
pump and recirculation of the liquid in the impeller. The pressure difference
between impeller tip and eye can cause a recirculation of a small volume of

flow rate at outlet of the impeller as shown in Fig.

recirculation in a centrifugal pump 

  

and rotating 

Disc friction power loss due to friction between the rotating faces of the 

Leakage and recirculation power loss. This is due to loss of liquid from the 
pump and recirculation of the liquid in the impeller. The pressure difference 
between impeller tip and eye can cause a recirculation of a small volume of 

flow rate at outlet of the impeller as shown in Fig. 
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Characteristics of a Centrifugal
 

With the assumption of no whirl component of velocity at entry to the impeller
of a pump, the work done on
by Equation( 34.2). Considering the fluid to be frictionless, the head developed
by the pump will be the same

developed. Therefore we can

 

From the outlet velocity triangle
 

 
where Q is rate of flow at impeller

of the impeller. The blade
rotational speed of the impeller

 
 

 
Using this relation and the relation
theoretical head developed can

 

 

where, and 
 

For a given impeller running
constants, and therefore head

by Eq. (35.3). This linear variation
35.1. 

 
If slip is taken into account, 
Moreover the slip will increase with the increase in flow rate 
slip in head-discharge relationship is shown by the curve II in Fig.
loss due to slip can occur in both a real and
shock losses at entry to the 

Fundamentals of Fluid Mechanics 

Centrifugal Pump 

With the assumption of no whirl component of velocity at entry to the impeller
on the fluid per unit weight by the impeller

by Equation( 34.2). Considering the fluid to be frictionless, the head developed
same san can be considered as the theoretical

can write for theoretical head developed 

  (35.1)

triangle figure( 34.1) 

                     (35.2)

impeller outlet and A is the flow area at the

blade speed at outlet can be expressed in
impeller N as 

relation given by Eq. (35.2), the expression
can be written from Eq. (35.1) as 

 

running at a constant rotational speed. and 
head and discharge bears a linear relationship

variation of with Q is plotted as curve

 the theoretical head will be reduced to 
Moreover the slip will increase with the increase in flow rate Q . The effect of

discharge relationship is shown by the curve II in Fig.
loss due to slip can occur in both a real and an ideal fluid, but in a real fluid the

 blades, and the friction losses in the flow

  

With the assumption of no whirl component of velocity at entry to the impeller 
impeller is given 

by Equation( 34.2). Considering the fluid to be frictionless, the head developed 
theoretical head 

 as 

(35.1) 

(35.2) 

the periphery 

in terms of 

expression of 

  (35.3) 

 are 
relationship as shown 

curve Iin Fig. 

 . 
. The effect of 

discharge relationship is shown by the curve II in Fig. 35.1. The 
an ideal fluid, but in a real fluid the 

flow passages 



  Fundamentals

102 

 

 

have to be considered. At the design point the shock losses are zero since the
fluid moves tangentially onto the
the head loss due to shock increases

 

 

Figure Head-discharge

 
where     is the off design flow rate and     
friction can usually be expressed

 

 
where,     is a constant. 

 
 

Equation (35.5) and (35.4) are also shown in Fig. 35.1 (curves III and IV) as the
characteristics of losses in a centrifugal pump. By subtracting
losses from the head in consideration of the slip, at any flow rate (by subtracting
the sum of ordinates of the curves III and IV from the ordinate of the curve II at
all values of the abscissa), we get the curve V which represents the rela
of the actual head with 
characteristic curve of the pump.

 
Effect of blade outlet angle

Fundamentals of Fluid Mechanics 

have to be considered. At the design point the shock losses are zero since the
tangentially onto the blade, but on either side of the design point

increases according to the relation 

  (35.4)

discharge characteristics of a centrifugal pump

is the off design flow rate and      is a constant. The losses due to
expressed as 

  (35.5)

Equation (35.5) and (35.4) are also shown in Fig. 35.1 (curves III and IV) as the
characteristics of losses in a centrifugal pump. By subtracting the sum of the
losses from the head in consideration of the slip, at any flow rate (by subtracting
the sum of ordinates of the curves III and IV from the ordinate of the curve II at
all values of the abscissa), we get the curve V which represents the rela

 the flow rate, and is known as head
pump. 

angle 

  

have to be considered. At the design point the shock losses are zero since the 
design point 

(35.4) 

pump 

is a constant. The losses due to 

(35.5) 

Equation (35.5) and (35.4) are also shown in Fig. 35.1 (curves III and IV) as the 
the sum of the 

losses from the head in consideration of the slip, at any flow rate (by subtracting 
the sum of ordinates of the curves III and IV from the ordinate of the curve II at 
all values of the abscissa), we get the curve V which represents the relationship 

head-discharge 
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The head-discharge characteristic of a centrifugal pump depends (among other
things) on the outlet angle of the impeller blades which in turn depends on blade
settings. Three types of blade

which the blade curvature is

(Fig. 35.2a), (ii) radial, when
which the blade curvature 

rotation and therefore, 
the cases are also shown in Figs.

triangle, the relationship between
 
 

 
which was expressed earlier

 

Figure Outlet
settings

 
In case of forward facing

therefore        is more than     

case of backward facing blade,
the constant in the theoretical head
(35.3), depends accordingly 

 
For forward curved blades 

For radial blades 

For backward curved blades
 

With the incorporation of above
discharge for three cases are
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discharge characteristic of a centrifugal pump depends (among other
things) on the outlet angle of the impeller blades which in turn depends on blade

blade settings are possible (i) the forward 

is in the direction of rotation and, therefore,

when (Fig. 35.2b), and (iii) backward facing for
 is in a direction opposite to that of the

 (Fig. 35.2c). The outlet velocity triangles
Figs. 35.2a, 35.2b, 35.2c. From the geometry

between and    can be written as. 

earlier by Eq. (35.2). 

Outlet velocity triangles for different blade 
settings in a centrifugal pump 

facing blade, and hence cot     is negative

than      . In case of radial blade, and 

blade, and Therefore the 
in the theoretical head-discharge relationship given by the Eq.

 on the type of blade setting as follows: 

blades 

incorporation of above conditions, the relationship of head and
are shown in Figure 35.3. These curves

  

discharge characteristic of a centrifugal pump depends (among other 
things) on the outlet angle of the impeller blades which in turn depends on blade 

 facing for 

therefore, 

(Fig. 35.2b), and (iii) backward facing for 
the impeller 

triangles for all 
geometry of any 

negative and 

 In 

 sign of , 
discharge relationship given by the Eq. 

the relationship of head and 
curves ultimately 
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revert to their more recognized
characteristics respectively after consideration of all the losse
earlier Figure 35.4. 

 
For both radial and forward facing blades, the power is rising monotonically as
the flow rate is increased. In the case of backward facing blades, the maximum
efficiency   occurs   in   the  

reasons, Qincreases beyond there occurs a decrease in power. Therefore the
motor used to drive the pump at part load, but rated at the design point, may be
safely used at the maximum
characteristic. In case of radial and forward
rated for maximum power, then it will be under utilized most
resulting in an increased cost for the

employed, rated at the design point, then if 
be overloaded and may fail. It, therefore, becomes more difficult to decide on a
choice of motor in these later

 
 
 
 
 
 
 
 
 
 
 
 

Figure Theoretical
curves of a centrifugal pump for different blade
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recognized shapes as the actual head
characteristics respectively after consideration of all the losses as explained

For both radial and forward facing blades, the power is rising monotonically as
the flow rate is increased. In the case of backward facing blades, the maximum

the   region   of   maximum   power.   If,   

increases beyond there occurs a decrease in power. Therefore the
motor used to drive the pump at part load, but rated at the design point, may be

maximum power. This is known as self
characteristic. In case of radial and forward-facing blades, if the pump motor is

maximum power, then it will be under utilized most of the time,
cost for the extra rating. Whereas, if a smaller

employed, rated at the design point, then if Q increases above     the motor will
be overloaded and may fail. It, therefore, becomes more difficult to decide on a

later cases (radial and forward-facing blades).

Theoretical head-discharge characteristic 
curves of a centrifugal pump for different blade 

settings 

  

head-discharge 
s as explained 

For both radial and forward facing blades, the power is rising monotonically as 
the flow rate is increased. In the case of backward facing blades, the maximum 

 for   some 

increases beyond there occurs a decrease in power. Therefore the 
motor used to drive the pump at part load, but rated at the design point, may be 

self-limiting 
facing blades, if the pump motor is 

of the time, 
smaller motor is 

increases above     the motor will 
be overloaded and may fail. It, therefore, becomes more difficult to decide on a 

blades). 
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Figure Actual 
characteristic
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 head-discharge and power-discharge 
characteristic curves of a centrifugal pump 
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Flow through Volute Chambers
 

Apart from frictional effects, no torque is applied to a fluid particle once it has
left the impeller. The angular momentum of fluid is therefore constant if friction
is neglected. Thus the fluid particles follow the path of a free vortex. In an 
case, the radial velocity at the impeller outlet remains constant round the
circumference. The combination

( =constant) gives a pattern
by the shape of the volute. This is the most important feature of the design of a
pump. At maximum efficiency, about 10 percent of the head generated by the
impeller is usually lost in the

 
Vanned Diffuser 

 
A vanned diffuser, as shown in Fig. 36.1,
from impeller to pressure energy of the fluid in a shorter length and with a
higher efficiency. This is very advantageous where the size of the pump is
important. A ring of diffuser vanes surrounds the impeller at the ou
fluid leaving the impeller first flows through a vaneless space before entering
the diffuser vanes. The divergence angle of the diffuser passage is of the order
of 8-10 ° which ensures no boundary
vanes are fixed by a compromise between the diffusion and the frictional loss.
The greater the number of vanes, the better is the diffusion (rise in static
pressure by the reduction in 
number of diffuser vanes should have no common factor with the number of
impeller vanes to prevent resonant
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Chambers 

Apart from frictional effects, no torque is applied to a fluid particle once it has
left the impeller. The angular momentum of fluid is therefore constant if friction
is neglected. Thus the fluid particles follow the path of a free vortex. In an 
case, the radial velocity at the impeller outlet remains constant round the

combination of uniform radial velocity with the free

pattern of spiral streamlines which should be
by the shape of the volute. This is the most important feature of the design of a
pump. At maximum efficiency, about 10 percent of the head generated by the

the volute. 

A vanned diffuser, as shown in Fig. 36.1, converts the outlet kinetic energy
from impeller to pressure energy of the fluid in a shorter length and with a
higher efficiency. This is very advantageous where the size of the pump is
important. A ring of diffuser vanes surrounds the impeller at the outlet. The
fluid leaving the impeller first flows through a vaneless space before entering
the diffuser vanes. The divergence angle of the diffuser passage is of the order

boundary layer separation. The optimum number
vanes are fixed by a compromise between the diffusion and the frictional loss.
The greater the number of vanes, the better is the diffusion (rise in static

 flow velocity) but greater is the frictional
er vanes should have no common factor with the number of

resonant vibration. 

  

Apart from frictional effects, no torque is applied to a fluid particle once it has 
left the impeller. The angular momentum of fluid is therefore constant if friction 
is neglected. Thus the fluid particles follow the path of a free vortex. In an ideal 
case, the radial velocity at the impeller outlet remains constant round the 

free vortex 

be matched 
by the shape of the volute. This is the most important feature of the design of a 
pump. At maximum efficiency, about 10 percent of the head generated by the 

converts the outlet kinetic energy 
from impeller to pressure energy of the fluid in a shorter length and with a 
higher efficiency. This is very advantageous where the size of the pump is 

tlet. The 
fluid leaving the impeller first flows through a vaneless space before entering 
the diffuser vanes. The divergence angle of the diffuser passage is of the order 

number of 
vanes are fixed by a compromise between the diffusion and the frictional loss. 
The greater the number of vanes, the better is the diffusion (rise in static 

the frictional loss. The 
er vanes should have no common factor with the number of 
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Figure A vanned

Cavitation in centrifugal pumps

Cavitation is likely to occur
the minimum and is lower than the atmospheric pressure by an amount that
equals the vertical height above which the pump is situated from the supply
reservoir (known as sump) plus the velocity head and frictional losses in
suction pipe. Applying the Bernoulli's equation between the surface of the liquid
in the sump and the entry to 

 

where, is the pressure at
liquid surface in the sump which

vertical height of the impeller inlet from the liquid surface in the sump, is the
loss of head in the suction pipe.

fitted to intake pipes. The term    
past these devices, in addition to losses caused by pipe friction and by bends in
the pipe. 

 
In the similar way as described in case of a reaction turbine, the net positive
suction head 'NPSH' in case of a pump i
(inclusive of both static and dynamic
corresponding to vapor pressure.

 
Therefore, 

 

 
Again, with help of Eq. (36.1),

 
 

 
The Thomas cavitation parameter
defined accordingly (as done
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vanned diffuser of a centrifugal pump 

pumps 

occur at the inlet to the pump, since the pressure
the minimum and is lower than the atmospheric pressure by an amount that
equals the vertical height above which the pump is situated from the supply
reservoir (known as sump) plus the velocity head and frictional losses in
suction pipe. Applying the Bernoulli's equation between the surface of the liquid

 the impeller, we have 

  (36.1)

at the impeller inlet and is the pressure
which is usually the atmospheric pressure,

vertical height of the impeller inlet from the liquid surface in the sump, is the
pipe. Strainers and non-return valves are 

fitted to intake pipes. The term     must therefore include the losses occurring
past these devices, in addition to losses caused by pipe friction and by bends in

In the similar way as described in case of a reaction turbine, the net positive
suction head 'NPSH' in case of a pump is defined as the available suction head
(inclusive of both static and dynamic heads) at pump inlet above the

vapor pressure. 

  (36.2)

Eq. (36.1), we can write 

parameter s and critical cavitation parameter
done in case of reaction turbine) as 

  

pressure there is 
the minimum and is lower than the atmospheric pressure by an amount that 
equals the vertical height above which the pump is situated from the supply 
reservoir (known as sump) plus the velocity head and frictional losses in the 
suction pipe. Applying the Bernoulli's equation between the surface of the liquid 

(36.1) 

pressure at the 
pressure, Z1 is the 

vertical height of the impeller inlet from the liquid surface in the sump, is the 
 commonly 

must therefore include the losses occurring 
past these devices, in addition to losses caused by pipe friction and by bends in 

In the similar way as described in case of a reaction turbine, the net positive 
s defined as the available suction head 

inlet above the head 

(36.2) 

parameter are 
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We can say that for cavitation

 
 

 

In order that s should be as large as possible, 
some installations, it may even be necessary to set the pump below the liquid
level at the sump (i.e. with a

and 
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cavitation not to occur, 

(36.3)

 

In order that s should be as large as possible, z must be as small as possible. In
some installations, it may even be necessary to set the pump below the liquid

a negative vale of z ) to avoid cavitation. 

(36.4)

  

(36.3) 

must be as small as possible. In 
some installations, it may even be necessary to set the pump below the liquid 

(36.4) 
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Axial Flow or Propeller Pump
 

The axial flow or propeller pump is the converse of axial flow turbine and is
very similar to it an appearance. The impeller consists of a central boss with a
number of blades mounted on it. The impeller rotates within a cylindrical
casing with fine clearance between the blade tips and the casing walls. Fluid
particles, in course of their flow through the pump, do not change their radial
locations. The inlet guide vanes are provided to properly direct the fluid to the
rotor. The outlet guide 
component of velocity at discharge. The usual number of impeller blades lies
between 2 and 8, with a hub

 
The Figure 37.1 shows an axial flow pump. The flow is the same at inlet and
outlet. an axial flow pumps develops low head but have high capacity. the
maximum head for such pump is of the order of 20m.The section through the
blade at X-X (Figure 37.1) is sh
Figure 37.2. 

 

A propeller
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Pump 

The axial flow or propeller pump is the converse of axial flow turbine and is
very similar to it an appearance. The impeller consists of a central boss with a
number of blades mounted on it. The impeller rotates within a cylindrical
casing with fine clearance between the blade tips and the casing walls. Fluid
particles, in course of their flow through the pump, do not change their radial
locations. The inlet guide vanes are provided to properly direct the fluid to the

 vanes are provided to eliminate the
component of velocity at discharge. The usual number of impeller blades lies

hub diameter to impeller diameter ratio of 0.3

The Figure 37.1 shows an axial flow pump. The flow is the same at inlet and
outlet. an axial flow pumps develops low head but have high capacity. the
maximum head for such pump is of the order of 20m.The section through the

X (Figure 37.1) is shown with inlet and outlet velocity triangles in

propeller of an axial flow pump 

  

The axial flow or propeller pump is the converse of axial flow turbine and is 
very similar to it an appearance. The impeller consists of a central boss with a 
number of blades mounted on it. The impeller rotates within a cylindrical 
casing with fine clearance between the blade tips and the casing walls. Fluid 
particles, in course of their flow through the pump, do not change their radial 
locations. The inlet guide vanes are provided to properly direct the fluid to the 

the whirling 
component of velocity at discharge. The usual number of impeller blades lies 

0.3 to 0.6. 

The Figure 37.1 shows an axial flow pump. The flow is the same at inlet and 
outlet. an axial flow pumps develops low head but have high capacity. the 
maximum head for such pump is of the order of 20m.The section through the 

own with inlet and outlet velocity triangles in 
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Figure Velocity
 

Analysis 
 

The blade has an aerofoil section.
the blade at inlet, rather the

(i) to the relative velocity 

mean radius then 

 

 
where is the angular velocity

Work done on the fluid per 
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Velocity triangles of an axial flow pump 

section. The fluid does not impinge tangentially
the blade is inclined at an angle of incidence

 at the inlet . If we consider the conditions

velocity of the impeller. 

 unit weight = 

  

tangentially to 
incidence 

conditions at a 
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For maximum energy transfer
velocity triangle, 

 
 

 
Assuming a constant flow from

 
 

 
Then, we can write 

 
Maximum energy transfer to

 

For constant energy transfer
the right hand side of Equation

obvious that increases 

must take place, 
Therefore , the blade must be

 
Matching of Pump and System

 
The design point of a hydraulic pump corresponds to a situation where the
overall efficiency of operation is maximum. However the exact
point of a pump, in practice,
characteristic with the headloss
pipe network, valve and so 

 
Let us consider the pump and the piping system as shown in Fig. 15.18. Since
the flow is highly turbulent, the losses in pipe system are proportional to the
square of flow velocities and can, therefore, be expressed in term
loss coefficients. Therefore, the losses in both the suction and delivery sides
can be written as 

 

 
where,    is the loss of head
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transfer , , i.e .Again , from

from inlet to outlet 

to the fluid per unit weight 

  (37.1)

transfer over the entire span of the blade from hub
Equation (37.1) has to be same for all values 

 with radius , therefore an equal increase

 and since is constant then must
be twisted as the radius changes. 

System Characteristics 

The design point of a hydraulic pump corresponds to a situation where the
overall efficiency of operation is maximum. However the exact 

practice, is determined from the matching
characteristic with the headloss-flow, characteristic of the external system (i.e.

 on) to which the pump is connected. 

Let us consider the pump and the piping system as shown in Fig. 15.18. Since
the flow is highly turbulent, the losses in pipe system are proportional to the
square of flow velocities and can, therefore, be expressed in terms of constant
loss coefficients. Therefore, the losses in both the suction and delivery sides

                                     (37.2a)

                                   (37.2b)

head in suction side and     is the loss of

  

from the outlet 

(37.1) 

from hub to tip , 
 of . It is 

increase in 

must increase. 

The design point of a hydraulic pump corresponds to a situation where the 
 operating 

matching of pump 
flow, characteristic of the external system (i.e. 

Let us consider the pump and the piping system as shown in Fig. 15.18. Since 
the flow is highly turbulent, the losses in pipe system are proportional to the 

s of constant 
loss coefficients. Therefore, the losses in both the suction and delivery sides 

(37.2a) 

(37.2b) 

of head in 
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delivery side and f is the Darcy's

and diameters of the suction
are accordingly the average
and (37.1b) represent the ordinary
fluid ad the pipe wall), while

minor losses through the loss coefficients      and      which include losses due
to valves and pipe bends, entry and exit losses, etc. Therefore the total head
the pump has to develop in order to supply the fluid from the lower to upper
reservoir is 

 

 
Now flow rate through the system is proportional to flow velocity. Therefore
resistance to flow in the form
rate and is usually written as

 
 

= system
 

where K is a constant which includes, the lengths and diameters of the pipes
and the various loss coefficients. System resistance as expressed by Eq. (37.4),
is a measure of the loss of head at any particular flow rate through the system.
If any parameter in the system is changed, such as adjusting a valve opening,
or inserting a new bend, etc., then 
(37.2) becomes, 

 

 
The head H can be considered as the total opposing head of the pumping
system that must be overcome for the fluid to be pumped from the lower to the
upper reservoir. 

 
The Eq. (37.4) is the equation
on H-Q plane (Figure 37.3), represents the system characteristic curve. The
point of intersection between
characteristic on H-Q plane is the operating point which may or may not lie at
the design point that corresponds to maximum efficiency of the pump. The
closeness of the operating and design points depends on how good an estimate
of the expected system losses has been made. It should be noted that if there is
no rise in static head of the

pipeline between two reservoirs at the same elevation),    
system curve passes through
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Darcy's friction factor, and are the

suction and delivery pipes respectively, while 
average flow velocities. The first terms in Eqs.

ordinary friction loss (loss due to friction
while the second terms represent the sum

minor losses through the loss coefficients      and      which include losses due
bends, entry and exit losses, etc. Therefore the total head

the pump has to develop in order to supply the fluid from the lower to upper

  (37.3)

Now flow rate through the system is proportional to flow velocity. Therefore
form of losses is proportional to the square of

as 

= system resistance = (37.4)

is a constant which includes, the lengths and diameters of the pipes
and the various loss coefficients. System resistance as expressed by Eq. (37.4),
is a measure of the loss of head at any particular flow rate through the system.

ystem is changed, such as adjusting a valve opening,
or inserting a new bend, etc., then K will change. Therefore, total head of Eq.

  (37.5)

can be considered as the total opposing head of the pumping
system that must be overcome for the fluid to be pumped from the lower to the

equation for system characteristic, and while
plane (Figure 37.3), represents the system characteristic curve. The

between the system characteristic and 
plane is the operating point which may or may not lie at

the design point that corresponds to maximum efficiency of the pump. The
closeness of the operating and design points depends on how good an estimate
of the expected system losses has been made. It should be noted that if there is

the liquid (for example pumping in a 

servoirs at the same elevation),     is zero and the
through the origin. 

  

the lengths 

 and 
Eqs. (37.1a) 

friction between 
 of all the 

minor losses through the loss coefficients      and      which include losses due 
bends, entry and exit losses, etc. Therefore the total head 

the pump has to develop in order to supply the fluid from the lower to upper 

37.3) 

Now flow rate through the system is proportional to flow velocity. Therefore 
of the flow 

(37.4) 

is a constant which includes, the lengths and diameters of the pipes 
and the various loss coefficients. System resistance as expressed by Eq. (37.4), 
is a measure of the loss of head at any particular flow rate through the system. 

ystem is changed, such as adjusting a valve opening, 
will change. Therefore, total head of Eq. 

(37.5) 

can be considered as the total opposing head of the pumping 
system that must be overcome for the fluid to be pumped from the lower to the 

while plotted 
plane (Figure 37.3), represents the system characteristic curve. The 

 the pump 
plane is the operating point which may or may not lie at 

the design point that corresponds to maximum efficiency of the pump. The 
closeness of the operating and design points depends on how good an estimate 
of the expected system losses has been made. It should be noted that if there is 

 horizontal 

is zero and the 
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Figure H-Q Characteristics of pump and system

Effect of Speed Variation 

Head-Discharge characteristic
speed. If such characteristic
characteristic at other speeds

three points on the characteristic
 

For points A, B and C , the 
are found as follows: 
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Q Characteristics of pump and system 

 

characteristic of a given pump is always referred to
characteristic at one speed is know, it is possible to 

other speeds by using the principle of similarity. Let

characteristic curve (Fig. 37.4) at speed . 

 corresponding heads and flows at a new

  

 

to a constant 
 predict the 

Let A, B, Care 

new speed 



  Fundamentals

114 

 

 

 

Figure Effect of speed

 
From the equality of term

 

 
and similarly, equality of 

 

 
Applying Eqs. (37.6) and (37.7)
points and are found

the new speed 

Thus, 

 
which gives 

 
 

 

or 
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(since for a given pump D is 
constant) 

(37.6)

speed variation on operating point of a centrifugal
pump 

term [Eq. (3.1)] gives 

 term [Eq. (3.1)] gives 

  (37.7)

(37.7) to points A, B and C the corresponding
found and then the characteristic curve can be

and 

(37.8)

  

(37.6) 

 

centrifugal 

(37.7) 

corresponding 
be drawn at 

(37.8) 



  Fundamentals

115 

 

 

Equation (37.8) implies that
Discharge characteristic curves

through the origin. If the static lift becomes zero, then the curve for system
characteristic and the locus of similar operating points will be the same parabola
passing through the origin. 

operating point at speed , it is only necessary to apply the similarity laws
directly to find the corresponding operating point at the new speed since it will
lie on the system curve itself

 
Variation of Pump Diameter

 
A variation in pump diameter may also be examined through the similarly
laws. For a constant speed, 

 
 

and 
 

or, 

 
Pumps in Series and Parallel

When the head or flow rate of a single pump is not sufficient for a application,
pumps are combined in series or in parallel to meet the desired requirements.
Pumps are combined in series to obtain an increase in head or in parallel for an
increase in flow rate. The combined pumps need not be of the same design.
Figures 38.1 and 38.2 show the combined 
identical pumps connected in series and parallel respectively. It is found that
the operating point changes
characteristic of two different

Fundamentals of Fluid Mechanics 

that all corresponding or similar points
curves at different speeds lie on a parabola

through the origin. If the static lift becomes zero, then the curve for system
characteristic and the locus of similar operating points will be the same parabola

 This means that, in case of zero static 

, it is only necessary to apply the similarity laws
directly to find the corresponding operating point at the new speed since it will

itself (Figure 37.4). 

Diameter 

A variation in pump diameter may also be examined through the similarly
 

  

(38.1)

Parallel 

When the head or flow rate of a single pump is not sufficient for a application,
pumps are combined in series or in parallel to meet the desired requirements.
Pumps are combined in series to obtain an increase in head or in parallel for an
increase in flow rate. The combined pumps need not be of the same design.

how the combined H-Q characteristic for the cases of
identical pumps connected in series and parallel respectively. It is found that

operating point changes in both cases. Fig. 38.3 shows the 
different pumps connected in series and parallel.

  

points on Head- 
parabola passing 

through the origin. If the static lift becomes zero, then the curve for system 
characteristic and the locus of similar operating points will be the same parabola 

 life, for an 

, it is only necessary to apply the similarity laws 
directly to find the corresponding operating point at the new speed since it will 

A variation in pump diameter may also be examined through the similarly 

(38.1) 

When the head or flow rate of a single pump is not sufficient for a application, 
pumps are combined in series or in parallel to meet the desired requirements. 
Pumps are combined in series to obtain an increase in head or in parallel for an 
increase in flow rate. The combined pumps need not be of the same design. 

characteristic for the cases of 
identical pumps connected in series and parallel respectively. It is found that 

 combined 
parallel. 
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Figure Two

Figure Two similar

Specific Speed of Centrifugal Pumps

The concept of specific speed
However, the quantities of 
in case of a turbine. 

 
For pump 
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Two similar pumps connected in series 

similar pumps connected in parallel 

Centrifugal Pumps 

speed for a pump is same as that for a
of interest are N, Hand Q rather than N, H 

(38.2)

  

a turbine. 
 and P like 

(38.2) 
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Figure Two different

 
The effect of the shape of rotor on specific speed is also similar to that for
turbines. That is, radial flow

of compared to those of axial
the entire pump and, in particular, the shape of volute may appreciably affect
the specific speed. Nevertheless, in general, centrifugal pumps are best suited
for providing high heads at moderate rates of flow as compared to axial flow
pumps which are suitable for large rates of f
turbines, the higher is the specific speed, the more compact is the machine for
given requirements. For multistage pumps, the specific speed refers to a single
stage. 
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different pumps connected in series and 
parallel 

The effect of the shape of rotor on specific speed is also similar to that for
flow (centrifugal) impellers have the lower

compared to those of axial-flow designs. The impeller, however, is not
articular, the shape of volute may appreciably affect

the specific speed. Nevertheless, in general, centrifugal pumps are best suited
for providing high heads at moderate rates of flow as compared to axial flow
pumps which are suitable for large rates of flow at low heads. Similar to
turbines, the higher is the specific speed, the more compact is the machine for
given requirements. For multistage pumps, the specific speed refers to a single

  

The effect of the shape of rotor on specific speed is also similar to that for 
lower values 

flow designs. The impeller, however, is not 
articular, the shape of volute may appreciably affect 

the specific speed. Nevertheless, in general, centrifugal pumps are best suited 
for providing high heads at moderate rates of flow as compared to axial flow 

low at low heads. Similar to 
turbines, the higher is the specific speed, the more compact is the machine for 
given requirements. For multistage pumps, the specific speed refers to a single 


