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1.2 Scalars and Vectors

The various quantities involved in the study of engineering electromagnetics can be
classified as,

1. Scalars and 2. Vectors

1.2.1 Scalar

The scalar is a quantity whose value may be represented by a single real number,
which may be positive or negative. The direction is not at all required in describing a
scalar. Thus,

A scalar is a quantity which is wholly characterized by its magnitude.

The various examples of scalar quantity are temperature, mass, volume, density, speed,
electric charge etc.

1.2.2 Vector

A quantity which has both, a magnitude and a specific direction in space is called a
vector. In electromagnetics vectors defined in two and three dimensional spaces are
required but vectors may be defined in n-dimensional space. Thus,

A vector is a quantity which is characterized by both, a magnitude and a direction.

The various examples of vector quantity are force, velocity, displacement, electric field
intensity, magnetic field intensity, acceleration etc.

1.2.3 Scalar Field

A field is a region in which a particular physical function has a value at each and
every point in that region. The distribution of a scalar quantity with a definite position in
a space is called scalar field. For example the temperature of atmosphere. It has a definite
value in the atmosphere but no need of direction to specify it hence it is a scalar field. The
height of surface of earth above sea level is a scalar field. Few other examples of scalar
field are sound intensity in an auditorium, light intensity in a room, atmospheric pressure
in a given region etc.

1.2.4 Vector Field

If a quantity which is specified in a region to define a field is a vector then the
corresponding field is called a vector field. For example the gravitational force on a mass



in a space is a vector field. This force has a value at various points in a space and always
has a specific direction.

The other examples of vector field are the velocity of particles in a moving fluid, wind
velocity of atmosphere, voltage gradient in a cable, displacement of a flying bird in a
space, magnetic field existing from north to south field etc.

1.3 Representation of a Vector

In two dimensions, a vector can be represented
A by a straight line with an arrow in a plane. This is
" [Terminating shown in the Fig. 1.1. The length of the segment is

IR point the magnitude of a vector while the arrow indicates

/ the direction of the vector in a given co-ordinate
o[suming system. The vector shown in the Fig. 1.1 is
point] symbolically denoted as OA. The point O is its

starting point while A is its terminating point. Its
Fig. 1.1 Representation of a vector  length is called its magnitude, which is R for the
vector OA shown. It is represented as [OA|=R. It

is the distance between the starting point and terminating point of a vector.
Key Point: The vector hereafter will be indicated by bold letter with a bar over it.

1.3.1 Unit Vector

A unit vector has a function to indicate the direction.
Its magnitude is always unity, irrespective of the

Unit vector direction which it indicates and the co-ordinate system
.V under consideration. Thus for any vector, to indicate its
/ direction a unit vector can be used. Consider a unit

IR| vector 3ps in the direction of OA as shown in the

0 / Fig. 1.2. This vector indicates the direction of OA but its

magnitude is unity.

So vector OA can be represented completely as its

P L3 UE; veutor magnitude R and the direction as indicated by unit

vector along its direction.
OA = ]5?[ aoa =Raoa

where dga = Unit vector along the direction OA and [@oa|=1

Key Point: Hereafter, letter @ is used to indicate the unit vector and its suffix indicates the
direction of the unit vector. Thus a, indicates the unit vector along x axis direction.

Incase if a vector is known then the unit vector along that vector can be obtained by
dividing the vector by its magnitude. Thus unit vector can be expressed as,



1.4 Vector Algebra

The various mathematical operations such as addition, subtraction, multiplication etc.
can be performed with the vectors. In this section the following mathematical operations
with the vectors are discussed.

1. Scaling 2. Addition 3. Subtraction

1.4.1 Scaling of Vector

This is nothing but, multiplication by a scalar to a vector. Such a multiplication
changes the magnitude (length) of a vector but not its direction, when the scalar is
positive.

Let o = Scalar with which vector is to be multiplied

Then if a>1 then the magnitude of a vector increases but direction remains same,
when multiplied. This is shown in the Fig. 1.3 (a). If a <1 then the magnitude of a vector
decreases but direction remains same, when multiplied. This is shown in the Fig. 1.3 (b).

If o =~1 then the magnitude remains same but direction of the vector reverses, when
multiplied. This is shown in the Fig. 1.3 (c).

A A A
&——— @ B
& — - a - — -2
aA aA -A
-
(a)a>1 (b)a<1 (c)o=-1

Fig. 1.3 Multiplication by a scalar
Key Point: Thus if o is negative. the magnitude of vector changes by o times while the
direction becomes exactly opposite to the original vector, after multiplication.

1.4.2 Addition of Vectors

Consider two coplanar vectors as shown in the Fig. 1.4. The vectors which lie in the
same plane are called coplanar vectors. .
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Fig. 1.4 Coplanar vectors

Fig. 1.5 Addition of vectors

Lei us find the sum of these two vectors A
and B, shown in the Fig. 14.

The procedure is to move one of the two
vectors parallel to itself at the tip of the other
vector. Thus move A , parallel to itself at the tip
of B.

Then join tip of A moved, to the origin. This
vector represents resultant which is the addition
of the two vectors A and B. This is shown in the
Fig. 1.5.

Let us denote this resultant as C then
C=A+B
It must be remembered that the direction of
Cis from origin O to the tip of the vector moved.

Another point which can be noticed that if B
is moved parallel to itself at the tip of A, we get
the same resultant C. Thus, the order of the
addition is not important. The addition of vectors
obeys the commutative law i.e. A +B =B +A.



Another method of performing the addition of vectors is the parallelogram rule.
Complete the parallelogram as shown in the Fig. 1.6. Then the diagonal of the
parallelogram represents the addition of the two vectors.

Resuitant

Fig. 1.6 Parallelogram rule for addition

By using any of these two methods not only two but any number of vectors can be
added to obfain the resultant. For example, consider four vectors as shown in the
Fig. 1.7(a). These can be added by shifting these vectors one by one to the tip of other
vectors to complete the polygon. The vector joining origin O to the tip of the last shifted
veclor represents the sum, as shown in the Fig. 1.7 (b). This method is called head to tail
rule of addition of vectors.

Once the co-ordinate systems are defined, then the vectors can be expressed in terms
of the components along the axes of the co-ordinate system. Then by adding the
corresponding components of the vectors, the components of the resultant vector which is
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{a) Four vectors (b) Sum of the four vectors

Fig. 1.7

R=A+B+C+D

0 A

the addition of the vectors, can be obtained. This method is explained after the co-ordinate
systems are discussed.

The following basic laws of algcbra are obeyed by the vectors A, B and C:

Law Addition Multiplication by scalar
Commutative A+B=B+A acA=Aa
Associative A+B+TO)=AR+0)+C B(xA)=Bx)A
Distributive a(A+B)=aA+aB (x+PB)A =axA+BA

1.4.3 Subtraction of Vectors

The subtraction of vectors can be obtained from the rules of addition. If B is to be
subtracted from A then based on addition it can be represented as,

C = A+(-B)

Thus reverse the sign of B i.e. reverse its direction by multiplying it with -1 and then
add it to A to obtain the subtraction. This is shown in the Fig. 1.8 (a) and (b).
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(a) Vectors (b) Subtraction of vectors

Fig. 1.8



1.4.3.1 Identical Vectors

Two vectors are said to be identical if there difference is zero. Thus A and B are
identical if A -B =0 i.e. A =B. Such two vectors are also called equal vectors.

1.5 The Co-ordinate Systems

To describe a vector accurately and to express a vector in terms of its components, it is
necessary to have some reference directions. Such directions are represented in terms of
various co-ordinate systems. There are various coordinate systems available in
mathematics, out of which three co-ordinate systems are used in this book, which are

1. Cartesian or rectangular co-ordinate system

2. Cylindrical co-ordinate system

3. Spherical co-ordinate system

Let us discuss these systems in detail.

1.6 Cartesian Co-ordinate System

This is also called rectangular co-ordinate system. This system has three co-ordinate
axes represented as x, y and z which are mutually at right angles to each other. These
three axes intersect at a common point called origin of the system. There are two types of
such system called



1. Right handed system and 2. Left handed system.

The right handed system means if x axis is rotated towards y axis through a smaller
angle, then this rotation causes the upward movement of right handed screw in the z axis
direction. This is shown in the Fig. 1.9 (a). In this system, if right hand is used then thumb
indicates x axis, the forefinger indicates y axis and middle finger indicates z axis, when
three fingers are held mutually perpendicular to each other.

z.- z
‘i_..,.,......,.......__. o e
Origin -+ Ef Origin ~
f:‘l__/ ;/»l ¢ ’- .
x7- s 7 y
Rotation of Ro(auon of
xintoy 1Upwan:| xintoy ‘ Downward
=
Right handed
screw
(a) Right handed system (b) Left handed system
Fig. 1.9

In left handed system x and y axes are interchanged compared to right handed system.
This means the rotation of x axis into y axis through smaller angle causes the downward
movement of right handed screw in the z axis direction. This is shown in the Fig. 1.9 (b).

Key Point: The right handed system is very commonly used and followed in this book.

In cartesian co-ordinate system x = 0 plane indicates two dimensional y-z plane, y = 0
plane indicates two dimensional x-z plane and z = 0 plane indicates two dimensional x-y
plane.

1.6.1 Representing a Point in Rectangular Co-ordinate System

A point in rectangular co-ordinate system is located by threc co-ordinates namely x, y
and z co-ordinates. The point can be reached by moving from origin, the distance x in x
direction then the distance y in y direction and finally the distance z in z direction.
Consider a point P having co-ordinates x;,y; and z,. It is represented as P(x,,v;,z,). It
can be shown as in the Fig.1.10 (a). The co-ordinates x,,y; and z; can be positive or
negative. The point Q(3,-1, 2) can be shown in this system as in the Fig. 1.10 (b).
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Fig. 1.10 Representing a point in cartesian system

Another method to define a point is to consider three surfaces namely x = constant,
y = constant and z = constant planes. The common intersection point of these three
surfaces is the point to be defined and the constants indicate the coordinates of that point.
For example, consider point Q which is intersection of three planes namely x = 3 plane,
y=-1 plane and z=2 plane. The planes x = constant, y = constant and z = constant are
shown in the Fig. 1.11. The constants may be positive or negative.
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1.6.2 Base Vectors

The base vectors are the unit vectors which are strictly oriented along the directions of
the co-ordinate axes of the given co-ordinate
z system.

Thus for cartesian co-ordinate system, the three
base vectors are the unit vectors oriented in x, y
and z axis of the system. So @, , &, and &, are the
base vectors of cartesian co-ordinate system. These
are shown in the Fig. 1.12.

g B |

e) -
— Y So any point on x-axis having co-ordinates
x;,0,0) can be represented by a vector joinin
rep ¥ 4
a, origin to this point and denoted as x; a, .

The base vectors are very important in

Fig. 1.12 Unit vectors in cartesian representing a vector in terms of its components,
system along the three co-ordinate axes.



1.6.4 Differential Elements in Cartesian Co-ordinate System

Consider a point P(x, y, z) in the rectangular co-ordinate system. Let us increase each
co-ordinate by a differential amount. A new point P’ will be obtained having co-ordinates
(x+dx, y +dy, z+dz).

Thus, dx = Differential length in x direction
dy = Differential length in y direction
dz = Differential length in z direction

Hence differential vector length also called elementary vector length can be
represented as,

dl =dxa, +dya, +dza, .. (6)

This is the vector joining original point P to new point P’.

Now point P is the intersection of three planes while point P’ is the intersection of
three new planes which are slightly displaced from original three planes. These six planes
together define a differential volume which is a rectangular parallelepiped as shown in the
Fig. 1.15. The diagonal of this parallelepiped is the differential vector length.



Hence the differential volume of the rectangular parallelepiped is given by,

dv = dx dy dz ...(8)

Note that dl is a vector but dv is a scalar.

Let us define differential surface areas. The differential surface element dS is
represented as,

dS = dSa, --(9)
where dS = Differential surface area of the element

a, = Unit vector normal to } a,

the surface dS dy dx ez
i - - T *

Thus various differential surface L “oa, dy *
elements in cartesian co-ordinate 2x) } -y
system are shown in the Fig. 1.16. | I |

The vector representation of ds, dS, dSs,
these clements is given as, X

Fig. 1.16 Differential surface elements
in cartesian system
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Differential vector surface area normal to x direction

dydz a, .. (10)
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Differential vector surface area normal to y direction

dxds a, .. (11)

dS, = Differential vector surface area normal to z direction
= dxdy 3, .. (12)

The differential elements play very important role in the study of engineering
electromagnetics.

1.7 Cylindrical Co-ordinate System

The circular cylindrical co-ordinate system is the three dimensional version of polar
co-ordinate system. The surfaces used to define the cylindrical co-ordinate system are,

1. Plane of constant z which is parallel to xy plane.

2. A cylinder of radius r with z axis as the axis of the cylinder.

3. A half plane perpendicular to xy plane and at an angle ¢ with respect to xz plane.
The angle ¢is called azimuthal angle.

The ranges of the variables are,



O0<r < o (l)

0<¢ < 2n 4 89

—oc0o <2 £ oo cee (3)

The point P in cylindrical co-ordinate system has three co-ordinates r, ¢ and z whose
values lie in the respective ranges given by the equations (1), (2) and (3).

The point P(r,9¢,,z,) can be shown as in the Fig. 1.17(b).
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(a) Cylindrical co-ordinate system " (b) Point P (ry, ¢4, Z,)

Fig. 1.17

The point P can be defined as the intersection of three surfaces in cylindrical
co-ordinate system. These three surfaces are,

r = Constant which is a circular cylinder with z axis as its axis.

¢ = Constant plane which is a vertical plane perpendicular to xy plane making angle ¢
with respect to xz plane.

z = Constant plane is a plane parallel to xy plane.
These surfaces are shown in the Fig. 1.18.
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Fig. 1.18

The intersection of any two surfaces out of the above three surfaces is either a line or a
circle and intersection of three surfaces defines a point P.

The intersection of z = constant and r = constant is a circle. The intersection of

¢ = constant and r = constant is a line. The point P which is intersection of all three
surfaces is shown in the Fig. 1.19.
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Fig. 1.19 Representing point P in cylindrical system



1.7.1 Base Vectors

Similar to cartesian coordinate system, there are three unit vectors in the r, ¢ and 2
directions denoted as a,,3, and a,.

These unit vectors are shown in the Fig. 1.20.

z These are mutually perpendicular to each

other.

The a, lies in a plane parallel to the xy
plane and is perpendicular to the surface of
the cylinder at a given point, coming radially

outward.
The unit vector a, lies also in a plane
o] / -y parallel to the xy plane but it is tangent to
Z\ the cylinder and pointing in a direction of
Py ' increasing ¢ at the given point.

\ | The unit vector a, is parallel to z axis
x>\~'————-/ and directed towards increasing z.

Fig. 1.20 Unit vectors in cylindrical Hence vector of point P can be
system represented as,

P - P,3,+Pa,+P,3a . (8)

r9r Oy B

1.7.2 Differential Elements in Cylindrical Co-ordinate System

Consider a point P(r, ¢, z) in a cylindrical co-ordinate system. Let cach co-ordinate is
increased by the differential amount. The differential increments in r,¢, 2 are dr, d¢ and dz
respectively.

Now there are two cylinders of radius r and r +dr. There are two radial planes at the
angles ¢ and 0+d¢. And there arc two horizontal planes at the heights z and z+dz. All
these surfaces enclose a small volume as shown in the Fig. 1.21.

The differential lengths in r and z directions are dr and dz respectively. In ¢ direction,
d¢ is the change in angle ¢ and is not the differential length. Due to this change d¢, there
exists a differential arc length in ¢ direction. This differential length, duc to d¢, in ¢
direction is r d¢ as shown in the Fig. 1.21.

Thus the differential lengths are,
dr = Differential length in r direction i (5)



z+dz

r+dr

Fig. 1.21 Differential volume in cylindrical co-ordinate system
rd¢ = Differential length in ¢ direction ... (6)

dz = Differential length in z direction v (7)

Hence the differential vector length in cylindrical co-ordinate system is given by,

di=dra, +rdpa, +dza, .. (8)




The magnitude of the differential length vector is given by,

|dl| = y/(dr)? +(r dg)? +(dz)? . (9)

Hence the differential volume of the differential element formed is given by,

dv = rdr dddz ... (10)
The differential surface areas in the three directions are shown in the Fig. 1.22.
z e
[l R .
dz ‘ d rdo
dr
0 $ o !
! | |
x ds, dS, ds,

Flg. 1.22 Differential surface elements in cylindrical system
The vector representation of these differential surface areas are given by,
dS, = Differential vector surface area normal to r direction

= rd¢dza, - (11)

dS, = Differential vector surface area normal to ¢ direction
drdz a, . (12)
dS, = Differential vector surface area normal to z direction

= rdrd¢a, - (13)

1.8 Spherical Co-ordinate System

The surfaces which are used to define the spherical co-ordinate system on the three
cartesian axes are,
1. Sphere of radius r, origin as the centre of the sphere.
2. A right circular cone with its apex at the origin and its axis as z axis. Its half angle
is 6. It rotates about z axis and 0 varies from 0 to 180°.
3. A half plane perpendicular to xy plane containing z axis, making an angle ¢ with
the xz plane.
Thus the three co-ordinates of a point P in the spherical co-ordinate system are (r, 6, ¢).
These surfaces are shown in the Fig. 1.25.



i z
;19
._l l.7
o g
]
Crasld » - O s
;rﬁ—,-;,.’_-_-—-—-—"/ y Y
.-’(\?.\."/
X X
(a) Sphere of radius r (b) Right circular cone
with centre as origin w'?h spex st origin (c) I::I’f‘;:;:::erpendicm:r
Fig. 1.25
The ranges of the variables are,
0Sr < o .. (1)
0<¢ < 2n v (2)
0 €6 < n as half angle .- (3)

The point P(r, 6, ¢) can be represented in
the spherical co-ordinate system as shown in
the Fig. 1.26. The angles 6 and ¢ are
measured in radians.

The point P can be defined as the
intersection of three surfaces in spherical
co-ordinate system. These three surfaces are,

r = Constant which is a sphere with
centre as origin.

6 = Constant which is right circular cone

0 - y with apex as origin and axis as z axis.
¢ = Constant is a plane perpendicular to
¥ xy plane.

The surfaces are already shown in the
Fig. 1.25. The intersection of the sphere
i.e. r = Constant surface and right circular
Fig. 1.26 Representing point P in spherical (one j.c. 6 = Constant surface is a horizontal

Co:ordinate system circle as shown in the Fig. 1.27. As seen
from the Fig. 1.27, the radius of this circle is rsin 6

X
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Fig. 1.27

Now consider intersection of ¢ = constant plane with the intersection of r = constant
and 0 = constant planes as shown in the Fig. 1.28. This defines a point P.



6 = Constan

r = Constanl

X

Fig. 1.28 Representing point P in spherical co-ordinate system

1.8.1 Base Vectors

Similar  to other two
co-ordinate systems, there are
three unit vectors in the r,0 and ¢
directions denoted as a,, a, and
a,. These wunit vectors are
mutually. perpendicular to each
other and are shown in the
Fig.1.29. The unit wvector a, is
directed from the centre of the
sphere ie. origin to the given
point P. It is directed radially
outward, normal to the sphere. It
lies in the cone 0= constant and
plane $=constant.

Fig. 1.29 Unit vectors in spherical co-ordinate
systems



The unit vector a4 is tangent to the sphere and oriented in the direction of increasing
6. It is normal to the conical surface.

The third unit vector 3, is tangent to the sphere and also tangent to the' conical
surface. It is oriented in the direction of increasing ¢. It is same as defined in the
cylindrical co-ordinate system.

Hence vector of point P can be represented as,

P = P,a,+Pya, +P,a, - (4)
where P, is the radius r and Py, P, are the two angle components of point P.

1.8.2 Differential Elements in Spherical Co-ordinate System

Consider a point P(r,0,¢) in a spherical co-ordinate system. Let each co-ordinate is
increased by the differential amount. The differential increments in r, 0, ¢ are dr, d® and
dé¢.

Now there are two spheres of radius r and r+dr. There are two cones with half angles

6 and 0+d6. There are two planes at the angles ¢ and ¢+d ¢ measured from xz plane. All
these surfaces enclose a small volume as shown in the Fig. 1.30.

X

Fig. 1.30 Differential volume in spherical co-ordinate system

The differential length in r direction is dr. The differential length in ¢ direction is
rsin® d¢. The differential length in 0 direction is r d 0. Thus,

dr = Differential length in r direction ... (5)
rd® = Differential length in 6 direction - (6)
rsin6d¢ = Differential length in ¢ direction w (7)



Hence the differential vector length in spherical coordinate system is given by,

dl =dra, +rd0dy +rsin0doa, - (8)

The magnitude of the differential length vector is given by,

[ = J(dr)? +(r d0)? +(rsin 0dg) - (9)

Hence the differential volume of the differential element formed, in spherical
co-ordinate system is given by,

dv = r” sin 8dr d6d¢ ... (10)

The differential surface areas in the three directions are shown in the Fig. 1.31.

:’i r sin® d¢
” r sin0 d¢ 30
ot fF B
rd® dr
- rd@
ds, dS, ds,

Fig. 1.31 Differential surface elements in spherical co-ordinate system

The vector representation of these differential surface areas are given by,
dS, = Differential vector surface area normal to r direction

= r?sin 0d0d¢ .. (11)
dS, = Differential vector surface area normal to 6 direction

= rsin®drd¢ .. (12)
dS, = Differential vector surface area normal to ¢ direction

= rdrd6 .. (13)



1.16 Divergence Theorem

[t is known that,
§?.d§
Vs+F = M@ ST ... Definition of divergence
From this definition it can be written that,

)ﬁ-dg = j(v.i) dv (1)
S v

This eqution (1) is known as divergence theorem or Gauss-Ostrogradsky theorem.
The Divergence theorem states that,

The integral of the normal component of any vector field over a closed surface is equal
to the integral of the divergence of this vector field throughout the volume enclosed by
that closed surface.

The theorem can be applied to any vector field but partial derivatives of that vector
field must exist. The divergence theorem as applied to the flux density. Both sides of the
divergence theorem give the net charge enclosed by the closed surface i.e. net flux crossing
the closed surface.

This is advantageous in electromagnetic
Closed surface S theory as volume integrals are more easy to
evaluate than the surface integrals.

The Fig. 149 shows how closed
Volume v surface S encloses a volume v for which

enclosed by divergence theorem is applicable.

FoRsd srace .S Key Point: The divergence theorem as applied

with Gauss'’s law is included in the section 3.12
of chapter 3.
Fig. 1.49

1.17 Gradient of a Scalar

Consider that in space let W be the unique function of x, y and z co-ordinates in the
cartesian system. This is the scalar function and denoted as W (x, y, z). Consider the
vector operator in cartesian system denoted as V called del. It is defined as,

9 - d

V (del) = % 3

a;




The gradient of a scalar W in various co-ordinate systems are given by,

Sr. No | Co-ordinate system Grad W= VW
1. Cartesian VW=3\;V§‘ %‘—3’-5,+95“}-
2 Cylindrical vw:i’a—‘:va,+%%%§.+.a.v;va,
OW_ 1 0W _ 1 oW -
= e VW=3r 3+ 38 % vaine de 20
Table 1.4

1.17.1 Properties of Gradient of a Scalar

The various properties of a gradient of a scalar field W are,
1. The gradtent V W gives the maximum rate of change of W per unit distance.
2. The gradient V W always indicates the direction of the maximum rate of change of
W.
3. The gradient V W at any point is perpendicular to the constant W surface, which
passes through the point.
4. The directional derivative of W along the unit vector a is V W+a (dot product),
which is projection of V W in the direction of unit vector a.

If U is the another scalar function then,

1.18 Curl of a Vector

The circulation of a vector field around a closed path is given by curl of a vector.
Mathematically it is defined as,

- Fedl
Curl Of F = Ag:qn_,n % S (l)

where ASy = Area enclosed by the line integral in normal direction

'Ihusmaximumcirculationof?pgrunitamaasarea tends to zero whose direction is
normal to the surface is called curl of F.

Symbolically it is expressed as,
VXF = curl of F (2

Key Point: Curl indicates the rotational property of vector field. If curl of vector is zero,
the vector field is irrotational.

In various co-ordinate sysems, the curl of F is given by,

- dF, 9K | [9F, oK. [9F OaF |-
VXF = [ay az]‘-“[a, —Bx]a’+[_§)(_—ay a,




ie.

i.e.

a, a, a,
= d 0J 0 :
VXF Fx- a—y— 'a—z- Cartesian ...(3)
E K K
= [18F, 9K ]. [9E dE]. [19(F) 13E]_
VXE = 1% 'W_’r_*[nr ar]‘“[; Y
a, ra, a,
= 1l 0 9 G
F F E
o(rF,) : 5 N
In—ar—-—,rcamwtbetaken outside as differentiation is with respect to
_ 1 [0Fsin® 9F|_ 1[ 1 9E OrE)]_
VX = rsine[ 00 M]a'-"?[sinﬁ 0 o |
1 a(rFﬂ) aFt =
¥ ?[ o 00|
a, ra, rsinfa,
e 1 d 0 0 2
VXF rzsine 5; —aﬁ 'a—¢ Spheﬂcal
F, rF rsin@F,

Key Point: The physical significance and concept of curl is discussed in detail in

section 7.10 of chapter 7.

2.2.1 Statement of Coulomb’s Law
The Coulomb's law states that force between the two point charges Q; and Q,,
1. Acts along the line joining the two point charges.

2. Is directly proportional to the product (Q;Q,) of the two charges.
3. Is inversely proportional to the square of the distance between them.
Consider the two point charges Q, and Q, as

Q, Q,
P e ——— E
ot

shown in the Fig. 2.1, separated by the distance R. The
charge Q, exerts a force on Q, while Q, also exerts a
force on Q,. The force acts along the line joining Q,
and Q,. The force exerted between them is repulsive
if the charges are of same polarity while it is attractive

if the charges are of different polarity.



Mathematically the force F between the charges can be expressed as,
RZ

(1)

where Q;Q; = Product of the two charges
R = Distance between the two charges

The Coulomb's law also states that this force depends on the medium in which the
point charges are located. The effect of medium is introduced in the equation of force as a
constant of proportionality denoted as k.

Q,Q,
F = k I‘{z w (2)
where k = Constant of proportionality

2.21.1 Constant of Proportionality (k)

The constant of proportionality takes into account the effect of medium, in which
charges are located. In the International System of Units (SI), the charges Q, and Q, are
expressed in Coulombs (C), the distance R in metres (m) and the force F in newtons (N).
Then to satisfy Coulomb’s law, the constant of proportionality is defined as,

k = —— . (3)

where € = Permittivity of the medium in which charges are located

The units of € are farads/metre (F/m).

In general ¢ is expressed as,

€ = EgE, ... (4)
where €, = Permittivity of the free space or vacuum
€, = Relative permittivity or dielectric constant of the
medium with respect to free space
€ = Absolute permittivity

For the free space or vacuum, the relative permittivity €, =1, hence

E’—'Eo

F = 1 Ql QZ
4ne, R2

- (5)




The value of permittivity of free space g, is,

= ._1_ 9 -12
Eg = 36nxlO =8.854x107"° F/m - (6)
1 1 9 9
k = = =8.98%x10” =9x10” m/F s KL}

4dne,  4nx8.854x10712

Hence the Coulomb's law can be expressed as,
QIQZ
4ne, R?
This is the force between the two point charges located in free space or vacuum.
Key Point: As Q is measured in Coulomb, R in metre and F in newton, the units of €,

. (8)

are,
2 2
Unit of g = ©© a 1S 5 = < xl
(N) (m*) N-m? N-m m
2
But N(Em = Farad which is practical unit of capacitance

Unit Of Co = F/m

2.2.2 Vector Form of Coulomb's Law

The force exerted between the two point charges has a fixed direction which is a
straight line joining the two charges. Hence the force exerted between the two charges can
be expressed in a vector form.



Consider the two point charges Q, and Q, located at the points having position
vectors T; and 7, as shown in the Fig. 2.2.

Fig. 2.2 Vector form of Coulomb's law

Then the force exerted by Q; on Q, acts along the direction Riz where a,, is unit
vector along Ri2. Hence the force in the vector form can be expressed as,

= & @ FO-
= .. (9
b dne RZ, 2 ®
B . = _ Vector
where d; = Unit vector along Ry, = Magnitude of vector
s - Ry T-% _H-h e (10)

122 =

|-ﬁul_ | Rez| RES
where l—ﬁ,,l = R = distance between the two charges

The following observations are important :

1. As shown in the Fig. 2.3, the force F is the force exerted on Q, due to Q,. It can be
expressed as,

Boa 292 g o Q0 6-h .. (11)
4negRy, 4megR3 | -
But -5 = -[h-§f]
a;; = —ap,
Hence substituting in (11),
o~ QIQZ _ =
FF = —— (4a,;)=-F o (12
41‘80R%1( 21) ( )

Hence force exerted by the two charges on each other is equal but opposite in
direction.

2. The like charges repel each other while the unlike charges attract each other. This is
shown in the Fig. 2.3. These are experiement conclusions though not reflected in the
mathematical expression.



P4 (a) F2 F1 (b) F2
Q, Q, Q, Q,
—@E--- -"@g;"gz@---
©) (@)

Fig. 2.3

3. It is necessary that the two charges are the point charges and stationary in naﬁure.

4. The two point charges may be positive or negative. Hence their signs”“must be
considered while using equation (9) to calculate the force exerted.

5. The Coulomb's law is linear which shows that if any one charge is increased n’
times then the force exerted also increass by n times.

F2 = —-F1 then nF2=-nk
where n = Scalar

2.3 Electric Field Intensity
Consider a point charge Q, as shown in Fig. 2.7 (a).

Ve T
1 1 -
\‘ 1 = T
- g
= Y ! ‘.,.r L ]
s ™ ' -
. 1 #
. ~ r
H-.- - —6- o e e w-}
n F ~
' 1471 7w
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‘..-:. * l"- ! ‘\ T
L 1 “ vy
* - 1 ta
- .
- .
(b)

Fig. 2.7 Electric field



If any other similar charge Q, is brought near it, Q, experiences a force. Infact if Q,
is moved around Q,, still Q, experiences a force as shown in the Fig. 2.7 (a).

Thus there exists a region around a charge in which it exerts a force on any other
charge. This region where a particular charge exerts a force on any other charge located in
that region is called electric field of that charge. The electric field of Q, is shown in the

Fig. 2.7 (b).
The force experienced by the charge Q, due to Q, is given by Coulomb's law as,

F2 = —ng—zz—iu
4neoRy;

Thus force per unit charge can be written as,

F2 Q -
Rl S, ) R . (1
QZ 4“80R‘22 au ( )

This force exerted per unit charge is called electric field intensity or electric field
strength. It is a vector quantity and is directed along a segment from the charge Q, to the
position of any other charge. It is denoted as E

¥ Q .
E = ——ia o« (2
41UEOR12P 1p : ()
where p = Position of any other charge around Q,

The equation (2) is the electric field intensity due to a single point charge Q, in a free
space or vacuum.

Another definition of electric field intensity is the force experienced by a unit positive
test charge i.e. Q, = 1C.

Consider a charge Q, as shown in the Fig. 2.8. The unit positive charge Q, = 1C is
placed at a distance R from Q,. Then the force acting on Q, due to Q, is along the unit
vector ag. As the charge Q, is unit charge, the force exerted on Q, is nothing but electric
field intensity E of Q, at the point where unit charge is placed.

Fig. 2.8 Concept of electric field intensity



E = 472(:1{2 ag e (3)

If a charge Q, is located at the center of the spherical coordinate system then unit
vector ap in the equation (3) becomes the radial unit vector a, coming radially outwards
from Q,. And the distance R is the radius of the sphere r.

E-_2

Awe o2

a, in spherical system - (4

24 Types of Charge Distributions

Uptill now the forces and electric fields due to only point charges are considered. In
addition to the point charges, there is possibility of continuous charge distributions along
a line, on a surface or in a volume. Thus there are four types of charge distributions which
are,

1. Point charge 2. Line charge 3. Surface charge 4. Volume charge

2.4.1 Point Charge

It is seen that if the dimensions of a surface carrying charge are very very small
compared to region surrounding it then the surface can be trcated to be a point. The
corresponding charge is called point charge. The point charge has a position but not the
dimensions. This is shown in the Fig. 2.14 (a). The point charge can be positive or
ncgative.

2.4.2 Line Charge

It is possible that the charge may be spreaded all along a line, which may be finite or
infinite. Such a charge uniformly distributed along a line is called a line charge. This is
shown in the Fig. 2.14 (b).
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[a) Point charges (b) Line charges

Fig. 2.14 Charge distributions

The charge density of the line charge is denotcd as p; and defined as charge per unit
length.

Total charge in coulomb
PL = “Toral length in metres (C/m)

Thus p, is measured in C/m. The p; is constant all along the length L of the line
carrying the charge.

24.21 Method of Finding Q fromp,

In many cases, p; is given to be the function of coordinates of the line i.e. p; =3x or
pr =4y? etc. In such a case it is necessary to find the total charge Q by considering
differential length dI of the line. Then by integrating the charge dQ on dli, for the entire
length, total charge Q is to be obtained. Such an integral is called line integral.

Mathematically, dQ = p; dI = charge on differential length dI
Q = [dQ=[p.d - (1)
L L
If the line of length L is a closed path as shown in the Fig. 2.14 (b) then integral is
called closed contour integral and denoted as,
Q = §Dl. dl w2
L




A sharp beam in a cathode ray tube or a charged circular loop of conductor are the
examples of line charge. The charge distributed may be positive or negative along a line.

nmp Example 2.6 : A charge is distributed on x axis of cartesian system having a line charge
density of 3x% WC/m. Find the total charge over the length of 10 m.
Solution : Given p;, =3x?uC/m and L = 10 m along x axis.

The differential length be dl = dx in x direction and corresponding charge is
dQ=p, dl=p; dx

10 3)(3 10
Q = [p,dl=] 3x*dx =[‘z‘]
L 0 = oJdo

= 1000 pC =1 mC

2.4.3 Surface Charge

If the charge is distributed uniformly over a two dimensional surface then it is called a
surface charge or a sheet of charge. The surface charge is shown in the Fig. 2.15.

The two dimensional surface has area in square metres. Then the surface charge
density is denoted as pg and defined as the charge per unit surface area.

Fig. 2.15 Surface charge distributions

e Total charge in coulomb ( C /mz)

Total area in square metres

Thus pg is expressed in C/ m?. The pg is constant over the surface carrying the charge.

2431 Method of Finding Q from pg

In case of surface charge distribution, it is necessary to find the total charge Q by
considering elementary surface area dS. The charge dQ on this differential area is given by
ps dS. Then integrating this dQ over the given surface, the total charge Q is to ke
obtained. Such an integral is called a surface integral and mathematically given by,

Q = [ dQ=][ ps ds )
S S




The plate of a charged parallel plate capacitor is an example of surface charge
distribution. If the dimensions of the sheet of charge are very large compared to the
distance at which the effects of charge are to be considered then the distribution is called

infinite sheet of charge.

2.4.4 Volume Charge

If the charge distributed uniformly in a volume then it is called volume charge. The
volume charge is shown in the Fig. 2.16.

*+++ oy Py
+

Fig. 2.16 Volume charge distribution

The volume charge density is denoted as p, and defined as the charge per unit
volume.

bl Total charge in coulomb ( (@ )

Total volume in cubic metres | m3

Thus p, is expressed in C/ m?>.

2.4.41 Method of Finding Q fromp

In case of volume charge distribution, consider the differential volume dv as shown in
the Fig. 2.16. Then the charge dQ possessed by the differential volume is p,dv. Then the
total charge within the finite given volume is to be obtained by integrating the dQ
throughout that volume. Such an integral is called volume integral. Mathematically it is
given by, G
Q = j p, dv - (4)

vol




2.5 Electric Field Intensity due to Various Charge Distributions
It is known that the electric field intensity due to a point charge Q is given by,

5. _0Q

"~ 4ne,R?

ag

Let us consider various charge distributions.

2.5.1 E due to Line Charge

dE Q

-~

Consider a line  charge

47(80 Rz

= 5R=

Line charg
2 ®  distribution having a charge density
p. as shown in the Fig. 2.17.
The charge dQ on the differential
length dl is,
dQ =p, dI
Hence the differential electric
field dE at point P due to dQ is
given by,
ppdl _
—a w (1
4ne, R . ®

Hence the total E at a point P due to line charge can be obtained by integrating dE

over the length of the charge.

E = py dl
4ney R?

ag (2

The ay and dl is to be obtained depending upon the co-ordinate system used.

2.5.2 E due to Surface Charge

Consider a surface charge distribution
having a charge density ps as shown in the
Fig. 2.18.

The charge dQ on the differential surface
area dS is,

dQ=deS



Hence the differential electric field dE at a point P due to dQ is given by,
dE = —9Q 5 - PsdS o
4mey R 4 e, R?

« (3)

Hence the total E at a point P is to be obtained by integrating dE over the surface area
on which charge is distributed. Note that this will be a double integration.

!

ag -~ (4)

The ag and dS to be obtained according to the position of the sheet of charge and the
coordinate system used.

2.5.3 E due to Volume Charge

dy s 5 Consider a volume charge distribution having
£ leh ¥ a charge density p, as shown in the Fig. 2.19.
e Ny The charge dQ on the differential volume dv
:‘ * % is,
+ &

R dQ = p, dv

PN\E Hence the differential electric field dE at a
Fig. 2.19 point P due to dQ is given by,
0B = el e DAY .. (5)
4negy R 4mey R”

Hence the total E at a point P is to be obtained by integrating dE over the volume in
which charge is accumulated. Note that this integration will be a triple integration.

= p.dv _
E = a ... (6
V'L 4ne, R? " ©)

The @y and dv must be obtained according to the co-ordinate system used.

Thus if there are all possible types of charge distributions, then the total E at a point is
the vector sum of individual electric field intensities produced by each of the charges at a
point under consideration.

E'wl = EP +E‘ +-ES +§V ™ (7)
where Ep, E;, Eg and E, are the ficld intensities due to point, line, surface and volume
charge distributions respectively.

Let us discuss and learn the method of obtaining clectric field intensities under widely
varying charge distributions.



2.6 Electric Field due to Infinite Line Charge

Consider an infinitely long straight line carrying uniform line charge having density p
C/m. Let this line lies along z-axis from —e to = and hence called infinite line charge Let
point P is on y-axis at which electric field intensity is to be determined. The distance of
point P from the origin is 'r' as shown in the Fig. 2.20.

Consider a small differential length d! carrying a charge dQ, along the line as shown
in the Fig. 2.20. It is along z axis hence d! = dz.

Flg. 2.20 Field due to infinite line charge

z .'.dQ=p|_ d.l=p[_ dZ ol (1)
' The co-ordinates of dQ are (0, 0, z) while
O] N the co-ordinates of point P are (0, r, 0). Hence
S, E the distance vector R can be written as,
a' ‘\\\ - ﬁ = ?P _?dl -'—'[riy -ziz]
\\\\ Ez
Yo, . IR|=+r?+2?
PN ra, —za
_ T ] )
'o' E1 I R I rz +Z2
4 Ex dE=—929 5
dnggRZ N
| - ” e
' [Ezql = IEz] = i, 42 [ra’ za‘] - (3)
Equal sl 4ne, ( r?+2? r?+2?

Fig. 2.21



Note : For every charge on positive z-axis there is equal charge present on negative
z-axis. Hence the z component of electric field intensities produced by such charges at
point P will cancel each other. Hence effectively there will not be any z component of E at
P. This is shown in the Fig. 2.21.

Hence the equation of dE can be written by eliminating 3, component,

dE = Py d2 i - (@

dne, (Jr +zz) Vr?

Now by integrating dE over the z-axis from —c to = we can obtain total E at point P.

_ PL 5
e = .J‘.. 41t£0(r2~t-22)3/2 rdza,

Note : For such an integration, use the substitution
z

z = rtan9 1ie. r=tan6

& dz = rsec’ 6de
Here r is not the variable of integration.

For z = —es, © =tan (~o0) = —m/2 =~90°

} Changing the limits
For z =+, O=tan™ () =n/2=4+90°

n’2
B PL 2 =
E = rxrsec” 0 do a
0o 2ns2 47Eg [r? +1r? tan? 6]%/2 g

_ _PL "jz r’sec?0d8 _

dnegg J ,2r3[1+tan2 el3l2 ay
But 1+tan?08 = sec?®
O B el L
dney 2.3 T eC 39 ~r
n/2
= PL J cos 0 dba, ...scc0=—l—
4negyr a5 cos©
— s = _ P - ’_t_ - :_’I —
= 4E€o —— [sin 9]_,,,2: = Anes [sm2 sm( 5 )] a,
P . A1z =.PL_ 93
"~ 4me rl1 (-Dla, e
E=-Pl_5 V/m . (5)




The result of equation (5) which is specifically in cartesian system can be generalized.
The @ is unit vector along the distance r which is perpendicular distance of point P from
the line charge. Thus in general a, =3..

Hence the result of E can be expressed as,

T =P =
E = TreT o V/m .. (6)

where r = Perpendicular distance of point P from the line charge
a, = Unit vector in the direction of the perpendicular distance of point P
from the line charge

2.7 Electric Field due to Charged Circular Ring

Consider a charged circular ring of radius r placed in xy plane with centre at origin,
carrying a charge uniformly along its circumference. The charge density isp; C/m.

The point P is at a perpendicular distance z' from the ring as shown in the Fig. 2.23.

Consider a small differential length dl
on this ring. The charge on it is dQ.

dQ = p, d!
= e dl

dE = a - (1

dnegRZ R @

where R = Distance of point
P from dI.
Consider the cylindrical co-ordinate

system. For dl we are moving in ¢
direction where di = r d¢.

Fig. 2.23

dl = rd¢ .. (2
Now RY = r?+22 ... from Fig. 2.23



While R can be obtained from its two
components, in cylindrical system as shown in the
Fig. 2.23(a). The two components are,

1) Distance r in the direction of —-a,, radially
inwards i.c. -ra,.

2) Distance z in the direction of @, ie. za,

J % R=-ra, +za, . (3)
</ % Key Point: This iethiod i e disad conveniently to

obtain R by identifying its components in the direction
of unit vectors in the co-ordinate system considered.

Fig. 2.23(a)
IR} = J(-1)?+(2)? =Vr?+2? . (4
R -ra,+za
L TN s Sl . (5)
R IR} r?+22
dE = ppdl 2 -—ra;+z:,
41[80( r? +2? r°+z
dE Pu (rdé) [-ra, +za,] e (6)

Note : The radial components of E at point P will be symmetrically placed in the plane
parallel to xy plane and are going to cancel each other. This is shown in the Fig. 2.23 (b).
Hence neglecting a, component from dE we get,

ZcomDODentofE di o pL (rd¢) -
- T Z 2% w (7)
Radial componrents dme, (r S )
aresymmetnml
g 2rn
;I;'I#\‘\$ E = 5 2\ 372 zZa,
II;I'I [ \\\\\\\ o=0 4’!50(!’ +2 )
’ ""’cl: :: ‘l\‘\‘\\‘
\
/”I’l',’ ’ 'i \ \“\\\:\\ - pL T - _z [ﬂg"
' aney(r? +2?)
0
y
... Integration w.rt. ¢
A E pLrz =
' E = > = 373 az &3 .(8)
Fig. 2.23 (b) 2go (r? +22)

where r = Radius of the ring :



z = Perpendicular distance of point P from the ring along

the axis of the ring
This is the electric field at a point P (0, 0, z) duc to the circular ring of radius r placed
in xy plane.

3.8 Applications of Gauss's Law

The Gauss's law is infact the alternative statement of Coulomb's law. The Gauss's law
can be used to find E or D for symmetrical charge distributions, such as point charge, an
infinite line charge, an infinite sheet of charge and a spherical distribution of charge. The
Gauss's law is also used to find the charge enclosed or the flux passing through the closed
surface. Note that whether the charge distribution is symmetrical or not, Gauss's law holds
for any closed surface but can be easily applied to the symmetrical distributions. But the
Gauss's law cannot be used to find E or D if the charge distribution is not symmetric.

While selecting the closed Gaussian surface to apply the Gauss's law, following
conditions must be satisfied,

1. D is every where either normal or tangential to the closed surface i.e. (-)=—12E or n. So

that D+dS becomes DdS or zero respectively.
2. Dis constant over the portion of the closed surface for which D *dS is not zero.
Let us apply these ideas to the various charge distributions.

3.8.1 Point Charge

Let a point charge Q is located at the origin.

To determine D and to apply Gauss's law, consider a spherical surface around Q, with
centre as origin. This spherical surface is Gaussian surface and it satisfies required
condition. The D is always directed radially outwards along a, which is normal to the
spherical surface at any point P on the surface. This is shown in the Fig. 3.10.



Fig. 3.10 Proof of Gauss's law

Consider a differential surface area dS as shown. The direction normal to the surface
dSis a,, considering spherical co-ordinate system. The radius of the sphere is r = a.

The direction of D is along a, which is normal to dS at any point P.
In spherical co-ordinate system, the dS normal to radial direction a, is,

dS = r? sin® d6 do=a? sinB dB d¢ (as r=a)
dS = dSa, =a?sin® dO do a, . (1)
Now D due to the point charge is given by,
=% Qo i
D = a = asr=a v (2
P sl sy 1oL ( ) 2
D+dS = |D||dS| cos®’

Note that @' is the angle between D and dS.

where |15| 4122 , |d§|=a2 sin0do d¢, ¢ =0°

The normal to dS is @, while D also acts along a, hence angle between dS and D i..

D-dS Qza2 sin® d0 d¢ cos0°
4na

% sin© d6d¢$ (3)



Alternatively to avoid the confusion between the symbol 6 we can write,
D.d§ = 2 a, -a’sin0doO doa,

4ra’
= 2 ginododofa, -5, ]
41[ r r
But ara, =1
D-dS = ?smed()dtb
V=§ﬁ dS = j j—smededd:
S 6=006=0
= o Feoself [0R" = Z2H-D-(-D] 2R
v = Q ... Gauss's law is proved

This proves the Gauss's law that Q coulombs of flux crosses the surface if Q coulombs
of charge is enclosed by that surface.

3.8.1.1 Use of Gauss's Law to Obtain D and E
Alternatively Gauss's law can be used to obtain D and E. Let us see how ?

From Gauss's law,

For a sphere of radius r, the flux density D is in radial direction a, always. Let
IDI D;.

D = D,3,
Let the Gaussian surface is a sphere of radius r enclosing charge Q.



While for the Gaussian surface i.c. sphere of radius r, dS normal to a, is,
dS = r’in0dod¢a,

D-+dS = D, r?sin0d0d¢ o (@, =1)
Now integrate over the surface of sphere of constant radius 'r'.
’ Vo B 1
§ D+dS = [ [ D, r2in0d0do
s ©=00=0
= D, r*[-cosO]] [¢]5 =4nr?D,
But $§ D-dS = Q
s
Q = 4nr’D,
D, = Qz and hence
4rr
S O
D = D,a, g a,
and | . T a,
€ 4m0f2
3.8.2 Infinite Line Charge i
r4
Consider an infinite line charge
of density p; C/m lying along z-axis e :za::cs;an
from ~co to +eo. This is shown in the ¢ e L /
Fig. 3.11. B q
Consider the Gaussian surface as r /dS
the right circular cylinder with z-axis s
as its axis and radius r as shown in L 3,
the Fig. 3.11. The length of the
cylinder is L. " y
T [ \5
__-——/

IRl ~a

Fig. 3.11 Infinite line charge




The flux density at any point on the suface is directed radially outwards i.e in the a,
direciion according to cylindrical co-ordinate system.

Consider differential surface area dS as shown which is at a radial distance r from the
line caarge. The direction normal to dS is a,.

As the line charge is along z-axis, there can not be any component of D in z direction.
So D has only radial component.

Now Q = §ﬁ-d‘s‘
S

The integration is to be evaluated for side surface, top surface and bottom surface.

Q = §D-dS+§ D-dS+ § D-dS
side top bottom
Now D = D,a, as has only radial component
and dS = rd¢dz 3, normal toa, direction.
" D+dS = D, rdodz(a,«a, )=D, rdodz ..asa,*a, =1

Now D, is constant over the side surface.

As D has only radial component and no component along a, and —a, hence
integrations over top and bottom surfaces is zero.
$D=dS = § DdS =0
top bottom
Q = § D+dS = § D, rdodz
side side
L 2
= [ | Dirdodz = rD, [zl 17
z=0 &=0

Q
I
N
]
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3.11 Maxwell's First Equation

The divergence of electric flux density D is given by,
§ D-ds
g SRS « i
dup = Al:r-’}o Av
aD,,JraDy oD,
dx dy oz

According to Gauss's law, it is known that
¥ = Q=§ D-dS
s

Expressing Gauss's law per unit volume basis

$ D-dS
2. 3 —_-s
Av Av

Taking lim Av — 0 i.e. volume shrinks to zero,

$ DedS
vo: & o oo §
A Ay " 4% Ay
I 5 S .
But Al\l,'-!:o i =i at that point

- (1)

- (2)

- (3)

. (8)

.. (5)

The equation (5) gives the volume charge density at the point where divergence is

obtained.
Equating (1) and (5),
divD = p,
ie. VeD = p,

. (6)

This is volume charge density around a point. The equation (6) is called Maxwell's
first equation applied to electrostatics. This is also called the point form of Gauss's law or

Gauss's law in differential form.



6.2 Poisson's and Laplace's Equations

From the Gauss's law in the point form, Poisson's equation can be derived. Consider
the Gauss's law in the point form as,

V.D = p, - (1)
where D = Flux density and p, = Volume charge density

It is known that for a homogeneous, isotropic and lincar medium, flux density and
electric ficld intensity are directly proportional. Thus,

D = ¢E - (2)
Vel = P, w (3)
From the gradient relationship,
E=-VV - (@)
Substituting (4) in (3),
Vee(-VV) = p, - (5)
Taking ~¢€ outside as constant,
-g[V-VV] = p,
K BT R - (6)

€

Now V «V operation is called 'del squared’ operation and denoted as V2.

viy= Br -

This equation (7) is called Poisson's equation.
If in a certain region, volume charge density is zero (p, =0) which is true for
dielectric medium then the Poisson's equation takes the form,
ViV = 0 (For charge free region)
, This is special case of Poisson's equation and is called Laplace's equation. The V?
operation is called the Laplacian of V.

Key Point: Note that if p, =0, still in that region point charges, line charges and surface
charges may exist at singular locations.

The equation (7) is for homogeneous medium for which € is constant. But if £ is not
constant and the medium is inhomogeneous, then cquation (5) must be used as Poisson's
equation for inhomogeneous medium.



5.2 Current and Current Density
The current is defined as the rate of flow of charge and is measured in amperes.

Key Point : A current of 1 ampere is said to be flowing across the surface when a charge
of one coulomb is passing across the surface in one second.

The current is considered to be the motion of the positive charges. The conventional
current is due to the flow of clectrons, which are negatively charged. Hence the direction
of conventional current is assumed to be opposite to the direction of flow of the electrons.

The current which exists in the conductors, due to the drifting of electrons, under the
influence of the applied voltage is called drift current.

While in dielectrics, there can be flow of charges, under the influence of the electric
field intensity. Such a current is called the displacement current or convection current.
The current flowing across the capacitor, through the dielectric separating its plates is an
example of the convection current.

The analysis of such currents, in the field theory is based on defining a current density
at a point in the field.

The current density is a vector quantity associated with the current and denoted as J.



5.2.1 Relation between I and J

Consider a surface S and 1 is the current passing through the surface. The direction of
current 1s normal to the surface S and hence direction of J is also normal to the surface S.

Consider an incremental surface arca dS as shown in the Fig. 5.1 (a) and a, is the unit
vector normal to the incremental surface dS.

z

ds

(2)J and dS are non‘ual {b) J and ¢S are not at right angles
Fig. 5.1
dS = dSa, while J=Ja, (1)

Then the differential current dI passing through the differential surface dS is given by
the dot product of the current density vector J and dS.

dl = j+d5 (dot product) - (2)
When J and dS are at right angles (0=90°) then

dl = Ja_ ~dSi, =]dS e
and 1={7Jas e (8)

s
where | = Current density in A/m?.

But if J is not normal to the differential arca dS then the total current is obtained by

integrating the incremental current which is dot product of J and dS, over the surface S.
This is shown in the Fig. 5.1 (b). Thus in general,

I =[J-dS (Dot product) e (5)
S

Thus if J is in A/m? and dS is in m? then the current obtained is in amperes (A). It may
be noted that J need not be uniform over S and S need not be a plane surface.



5.2.2 Relation between J and p,

The set of charged particles give rise
to a charge density p, in a volume v.
The current density ] can be related to
the velocity with which the volume
charge density i.c. charged particles in
volume v crosses the surface S at a
point. This is shown in the Fig. 5.2. The
velocity with which the charge is getting
transferred is ¥ m/s. It is a vector
quantity.

To derive the relation between J and
p., consider differential volume Av
having charge density p, as shown in
the Fig. 5.3. The elementary charge that
volume carries is,

MQ = p,av

AQ = p Av z

AS AL

Fig. 5.2

. (6)

Movement 1§
in x-direction

Fig. 5.3 Incremental charge moving in x-direction



Let AL is the incremental length while AS is the incremental surface arca hence

incremental volume is, <
Av = ASAL v (7)

: j'e) +ASAL - (8)

Let the chargc is moving in x-direction with velocity v and thus velocity has only x
component v,

[Note : Velocity is denoted by small italic letter while the volume is denoted by small
normal letter.]

In the time interval At the element of charge has moved through distance Ax, in
x-direction as shown in the Fig. 5.3. The direction is normal to the surface AS and hence
resultant current can be expressed as,

AQ
AI = -KF s (9)

But now, AQ=p. ASAx as the charge corresponding the length Ax is moved and
responsible for the current.

AXx
Al = Py AS-ZT - (10)
Ax Az PO PR
But = " Velocity in x-direction i.e. v,
Al = p, ASv, .. (11)
Note that v, = x component of velocity v
But Al = JAS when J and AS arc normal

Here J and AS are normal to each other hence companng the two cquations,
J» = py7, =X component of J .. (12)
In this case ] has only x component.

In general, the relation between J and p, can be expressed as,
J =0,V - (13)
where v = Velocity vector

Such a current is called convection current and the current density is called
convection current density.

Key Point : The convection current density is linearly proportional to the charge density
and the velocity with which the charge is transferred.

5.3 Continuity Equation

The continuity equation of the current is based on the principle of conservation of
charge. The principle states that,



The charges can neither be created nor be destroyed.

Consider a closed surface S with a current density J, then the total current I crossing
the surface S is given by,

I = fj.d‘s‘ e (1)
5

The current flows outwards from the closed surface. It has been mentioned earlier that
the current means the flow of positive charges. Hence the current I is constituted due to’
outward flow of positive charges from the closed surface S. According to principle of
conservalion of charge, there must be decrease of an equal amount of positive charge
inside the closed surface. Hence the outward rate of flow of positive charge gets balanced
by the rate of decrcase of charge inside the closed surface.

Let Q; Charge within the closed surface

-%i- Rate of decrease of charge inside the closed surface

The negative sign indicates decrease in charge.

Due to principle of conservation of charge, this rate of decrease is same as rate of
outward flow of charge, which is a current.

I = §j—d§ =-d—d(-f‘ - (2)
s

This is the integral form of the continuity equation of the current.

The negative sign in the equation indicates outward flow of current from the closed
surface. So the cquation (2) is indicating outward flowing current I.

If the current is entering the volume then

Fod€ = 1= dQ;
$JdS = ~I=+—2
s
The point form of the continuity equation can be obtained from the integral form.
Using the divergence theorem, convert the surface integral in integral form to the volume

integral.

§iod-s — I (V Oj) dv " .(3)
[ vol 4 :
dQ; _ e
-—pt = ;L (Vo)) dv - (4)
S|
But Q = [p.dv .. (5)
vol
where p, = Volume charge density



[@epav = —ad—t[‘!‘.pv dv]=_;£ 33,“ dv ... (6)

vol

For a constant surface, the derivative becomes the partial derivative.
_ op,
[Vehav = | -gt dv )
vol vol

If the relation is true for any volume, it must be true even for incremental volume Av.

V-hav = —%Av - ®
2 d
v.f = -2 -0

This is the point form or differential form of the continuity equation of the current.

The equation states that the current or the charge per second, diverging from a small
volume per unit volume is equal to the time rate of decrease of charge per unit volume at

every-point.

5.3.1 Steady Current
For steady currents which are not the functions of time, dp, / ot = 0 hence,

Ve = 0 (Steady current) .. (10)

For such currents, the rate of flow of charge remains constant with time. The steady
currents have no sources or sinks, as it is constant.

5.4 Conductors

Let us study the behaviour and properties of the conductors. Under the effect of
applied electric field, the available frce electrons start moving. The moving electrons strike
the adjacent atoms and rebound in the random directions. This is called drifting of the
electrons. After some time, the electrons attain the constant average velocity called drift



, velocity (v,). The current constituted due to the drifting of such electrons in metallic
conductors is called drift current. The drift velocity is directly proportional to the applied
electric field.

5.’ <« E e (l)

The constant of proportionality is called mobility of the clectrons in a given material
and denoted as p . It is positive for the electrons.

-i’-d = -ueE e (2)

The negative sign indicates that the velocity of the electrons is against the direction of
ficld E.

. Velocit 2
Now u (Mobility) = —oz = //:1 Vs

Thus mobility is mcasured in squarc metres per voltsccond (m?/V-s). The typical
values of mobility are 0.0012 for aluminium, 0.0032 for copper etc.

According to relation between J and ¥ we can write,

J - p‘_ ] are (3)

But in the material, the number of protons and electrons is same and it is always
clectrically necutral. Hence p, =0 for the neutral materials. The drift velocity is the velocity
of free electrons hence the above relation can be expressed as,

J = pcBa . (@)
where pe = Charge density due to free electrons

The charge density p, can be obtained as the product of number of free electrons/m?
and the charge ‘e’ on one electron. Thus p, = ne where n is number of free
electrons per m3.

Substituting equation (2) in equation (4) we get,

EEXE -

5.4.1 Point Form of Ohm's Law

The relationship between J and E can also be expressed in terms of conductivity of the
material.

Thus for a metallic conductor,

J] = oE .. (6)

where o = Conductivity of the material

The conductivity is measured in mhos per metre (U/m). The equation (6) is called
point form of Ohm's law. The unit of conductivity is also called Siemens per metre (S/m).



The typical values of conductivity are 3.82x107 for aluminium, 5.8x107 for copper etc.
expressed in mho/m. For the metallic conductors the conductivity is constant over wide
ranges of current density and electric field intensity. In all directions, metallic conductors
have same propertics hence called isotropic in nature. Such materials obey the Ohm's law
very faithfully.

Comparing the cquation (5) and equation (6) we can write,

C = =PeHe - (7)
This is conductivity interms of mobility of the charge density of the electrons.

The resistivity is the reciprocal of the conductivity. The conductivity depends on the
temperature. As the temperature increases, the vibrations of crystalline structure of atoms
increases. Due to increased vibrations of clectrons, drift velocity decreases, hence the
mobility and “conductivity decreases. So as temperature increases, the conductivity
decreases and resistivity increases.

5.4.2 Resistance of a Conductor
Consider that the voltage V is

applied to a conductor of length L ' l-;'i
having uniform cross-section S, as : D O
e gl G =S N
The direction of E is same as s >
the direction of conventional 1 _
current, which is opposite to the Sosvonerst
flow of clectrons. The electric field Hi=
applied is  wuniform and its v
magnitude is given by, Fig. 5.5 Conductor subjected to voitage V
v
E = "l:' .. (8)
The conductor has uniform cross-section S and hence we can write,
I =[J.dS=Js .. (9)
3
The current direction is normal to the surface S.
Thus, J = % =0oE - (10)
And using equation (8) in equation (10) we get,
] = ox where ¢ = Conductivity of the material w (11)

L



S —=~ S =(-"s" )l e (12)
— -_—
R f— ‘—[ — ""S‘ es (13)

Thus the ratio of polential difference between the two ends of the conductors to the
current flowing through it is resistance of the conductor.

The equation (12) is nothing but the Ohm's law in its normal form given by V = IR
The equation is true for the uniform fields and resistance is measured is ohms (Q).

For nonuniform fields, the resistance R is defined as the ratio V to I where V is the
potential difference betweem two specified equipotential surfaces in the material and [ is
the current crossing the more posilive surface of the two, into the material. Mathematically
the resistance for nonuniform fields is given by,

B o

._b_.. s ... (14)

The numerator is a linc integration giving polential difference across two ends while
the denominator is a surface integration giving current flowing through the material.
The resistance can also be expressed as,

m o Bk
R P Q .. (15)
where P, = -;- = Resistivity of the conducter in Q-m

5.4.3 Properties of Conductor
Consider that the charge distribution is suddenly unbalanced inside the conductor.
There are number of electrons trying to reside inside the conductor. All the electrons are
negatively charged and they start repelling cach other due to their own clectric fields. Such
clectrons get accelerated away from cach other, till all the clectrons causing interior
imbalance, rcach at the surface of the conductor. The conductor is surrounded by the
insulating medium and hence clectrons just driven from the interior of the conductor,
reside over the surface. Thus,
1. Under static conditions, no charge and no electric field can exist at any point
within the conducting material.
2. The charge can exist on the surface of the conductor giving rise to surface charge
density.
3. Within a conductor, the charge density is always zero.
4. The charge distribution on the surface depends on the shape of the surface.

5. The conductivity of an ideal conductor is infinite.
6. The conductor surface is an equipotential surface.



5.6 Dielectric Materials

It is seen that the conductors have large number of frec electrons while insulators and
diclectric materials do not have free charges. The charges in dielectrics are bound by the
finite forces and hence called bound charges. As they are bound and not free, they cannot
contribute to the conduction process. But if subjected to an electric field E, they shift their
relative positions, against the normal molecular and atomic forces. This shift in the relative
positions of bound charges, allows the dielectric to store the cnergy.

The shifts in positive and negative charges are in opposite directions and under the
influence of an applied electric field E such charges act like small electric dipoles.

Key Point : When the dipole results from the displacement of the bound charges,
the dielectric is said to be polarized.

And these electric dipoles produce an electric field which opposes the externally
applied electric field. This process, due to which separation of bound charges results to
produce electric dipoles, under the influence of electric field E, is called polarization.

5.6.1 Polarization

To understand the polarization, consider
an atom of a dielectric. This consists of a
nucleus with positive charge and negative
charges in the form of revolving electrons in
the orbits. The negative charge is thus
considere? to be in the form of cloud of
clectrons. This is shown in the Fig. 5.6.

Fig. 5.6 Unpolarized atom of a dielectric



Note that E applied is zero. The number of positive charges is same as negative
charges and hence atom is clectrically neutral. Due to symmelry, both positive and
negative charges can be assumed to be point charges of equal amount, coinciding at the
centre. Hence there cannot exist an clectric dipole. This is called unpolarized atom.

When clectric field E is applied, the symmetrical distribution of charges gets disturbed.
The positive charges cxperience a force F=QE while the negative charges experience a
force F=-QE in the opposite direction.

Now there is separation betwcen the nucleus and the centre of the clectron cloud as
shown in the Fig. 5.7 (a). Such an atom is called polarized atom.

Center
of electron

cloud - *q
e — ®

1 - d ]

I [

—E
(a) Polarized atom (b) Equivalent dipole

Fig. 5.7

It can be secn that an electron coud has a centre scparated from the nucleus. This
forms an electric dipole. The equivalent dipole formed is shown in the Fig. 5.7 (b). The
dipole gets aligned with the applied field. This process is called polarization of diclectrics.

There are two types of diclectrics,

1. Nonpolar and 2. Polar.

In nonpolar molecules, the dipole arrangement is totally absent, in absence of electric
ficld E It results only when an externally field E is applied to it. In polar molecules, the
permanent displacements between centres of positive and negative charges exist. Thus
dipole arrangements exist without application of E But such dipoles are randomly
oriented. Under the application of E, the dipoles experience torque and they align with the
direction of the applied field E This is called polarization of polar molecules.

The examples of nonpolar molecules are hydrogen, oxygen and the rarc gases. The
examples of polar molecules are water, sulphur dioxide, hydrochloric acid ctc.



5.7 Boundary Conditions

When an electric field passes from one medium to other medium, it is important to
study the conditions at the boundary between the two media. The conditions existing at
the boundary of the two media when ficld passes from one medium to other are called
boundary conditions. Depending upon the nature of the media, there arc two situations of
the boundary conditions,

1. Boundary between conductor and free space.

2. Boundary between two dielectrics with different propertics.

The frec space is nothing but a dielectric hence first case is nothing but the boundary
between conductor and a dielectric. For studying the boundary conditions, the Maxwell's
equations for clectrostatics are required.

$E-dL = 0 and § D-dS5=0Q
Similarly the field intensity E is required to be decomposed into two components
namely tangential to the boundary (Eb" ) and normal to the boundary ( Ey ).
E = E,,+Ey
Similar decomposition is required for flux density D as well.
Let us study the various cases of boundary conditions in detail.

5.8 Boundary Conditions between Conductor and Free Space

Consider a boundary between conductor and free space. The conductor is ideal having
infinite conductivily. Such conductors are copper, silver eic. having conductivity of the
order of 10° S/m and can be treated ideal. For ideal conductors it is known that,

1. The field intensity inside a conductor is zero and the flux density inside a conductor
is zero.

2. No charge can exist within a conductor. The charge appears on the surface in the
form of surface charge density.



3. The charge density within the conduclor is zero.

Thus E, D and p, within the conductor are zero. While pg is the surface charge
density on the surface of the conductor.

To determine the boundary conditions let us use the closed path and the Gaussian
surface.

Consider the conductor free space boundary as shown in the Fig. 5.8.

Gaussian
surface

Fig. 5.8 Boundary between conductor and free space

5.8.1 E at the Boundary

Let E be the electric field intensity, in the direction shown in the Fig. 5.11, making some
angle with the boundary. This E can be resolved into two components :

1. The component tangential to the surface (TE‘.,, ).
2. The component normal to the surface (Ey).

It is known that,
§1‘z-dL =0 (1)

The integral of E«dL carried over a closed contour is zero ic. work done in carrying
unit positive charge along a closed path is zero.

Consider a rectangular closed path abcda as shown in the Fig. 58. It is traced in
clockwise direction as a-b-c-d-a and hence § E-dL can be divided into four parts.

§ B-dl= | E-dL+] E-dls
a b

A C—
1

E<dl+[ E+dL=0 - (2)
d

The closed contour is placed in such a way that its two sides a-b and c¢-d are parallel
to tangential direction to the surface while the other two are normal to the surface, at the
boundary.



The rectangle is an clementary rectangle with elementary height Ah and elementary
width Aw. The rectangle is placed in such a way that half of it is in the conductor and
remaining half is in the free spacc. Thus Ah/2 is in the conductor and Ah/2 is in the free

space.
Now the portion c-d is in the conductor where E = 0 hence the corresponding integral
is zero.

j‘ fi'dt-&-j li‘dl—.-i’j E+dL=0 w (3)
a b X

As the width Aw is very small, E over it can be assumed constant and hence can be
taken out of integration.

[Eedl = E
a

But Aw is along tangential direction to the boundary in which direction E = E,,

dL = E(Aw) e (4)

ﬁ‘-.,?

fn-dt = E,,(aw) where E,, =|E,| - (5)

Now b-c is parallel to the normal component so we have E = Ey along this direction.

Over the small height Ah, Ey can be assumed constant and can be taken out of
integration.

Esdl = Ej ¢i|;=r=Nj di. . (6)

& —

But out of b, b-2 is in frcc space and 2- is in the conductor where E = 0.

jdt:jdi {i.:‘-'lo“; Y,

I‘ EedL = L\(A;-‘-) (8

Similarly for path d-a, the condition is same as for the path b-c, only direction is
opposite.

 J— Ah
! E-dL = -EN(-—Z—) w (9)

Substituting equations (4), (8) and equation (9) in (3) we get,

2 By Awe EN[%}! )-EN (% ): 0 ... (10)



E., Aw = 0 But Aw 20 as finile

“lan

En, = 0 .. (11)

Thus the tangential component of the electric field intensity is zero at the boundary
between conductor and free space.

Key Point : Thus the E at the boundary between conductor and free space is
always in the direction perpendicular to the boundary.

Now D = g E for free space
Dun = £9Epuy =0 . (12)

Thus the tangential component of electric flux density is zero at the boundary
between conductor and free space.
Key Point : Hence electric flux density 1) is also only in the normal direction at the
boundary between the conductor and the free space.

5.8.2 D, at the Boundary

To find normal component of D, select a closed Gaussian surface in the form of right
circular cylinder as shown in the Fig. 5.8. Its height is Ah and is placed in such a way that
Ah/2 is in the conductor and remaining Ah/2 is in the free space. Its axis is in the normal
direction to the surface.



According to Gauss's law, f D«dS=Q
S

The surface integral must be evaluated over three surfaces,

i) Top, ii) Bottom and iii) Lateral.

Let the arca of top and bottom is same equal to AS.
j D+dS + f D+dS + J‘ D*dS=Q . (13)
top bottom lateral

The bottom surface is in the conductor where D = 0 hence corresponding integral is
ZCr10.

The top surface is in the free space and we are interested in the boundary condition
hence top surface can be shifted at the boundary with Ah — 0.

jﬁ-dg + j D+*dS=Q . (14)
top lateral

The lateral surface area is 2rx r Ah where r is the radius of the cylinder. But as Ah -0,
this area reduces to zero and corresponding integral is zero.
- hS
While only component of D present is the normal component having magnitude Dy,.
The top surface is very small over which Dy can be assumed constant and can be taken
out of integration.

jl‘)-d's' = Dy [ dS = Dy &S .. (15)
top op
From Gauss's law,
DyAS = Q .. (16)
But at the boundary, the charge exists in the form of surfacc charge density pg C/ m?.
Q = psa&S w (17)

Equating equation (1€) and (17),
DN AS = Pg AS
Dy = pg - (18)

Thus the flux leaves the surface normally and the normal component of flux density
is equal to the surface charge density.

DN = 80 El\ = ps o (19)

By - . )




5.10 Concept of Capacitance

Consider two conducting materials M; and M, which are placed in a dielectric
medium having permittivity €. The material M, carries a positive charge Q while the
material M, carries a negative charge, equal in magnitude as Q. There are no other
charges present and total charge of the system is zero. In conductors, charge cannot reside
within the conductor and it resides only on the surface. Thus for M, and M,, charges + Q
and - Q reside on the surfaces of M, and M, respectively. This is shown in the Fig. 5.13.

Fig. 5.13 Concept of capacitance

Such a system which has two conducting surfaces carrying equal and opposite charges,
separated by a dielectric is called capacitive system giving rise to a capacitance.

The electric field is normal to the conductor surface and the electric flux is directed
from M, towards M, in such a system. There exists a potential difference between the two
surfaces of M, and M,. Let this potential is V,,. The ratio of the magnitudes of the total
charge on any one of the two conductors and potential difference between the conductors
is called the capacitance of the two conductor system denoted as C.

C & Vo - (1)
_ Q

In general, C = v v &)
where Q = Charge in coulombs

V = Potental difference in volts
The capacitance is measured in farads (F) and

3 Pt = 1 coulomb
1 volt

As charge Q resides only on the surface of the conductor, it can be obtained from the
Gauss's law as,



While V is the work done in moving unit positive charge from negative to the positive
surface and can be obtained as,

V = - E-dl=-] E-dL
I

Hence capacitance can be expressed as,
$ eE-dS

> _S' F .- (3)
j EBeat

<o

C =

If the charge Q is increased, then E and D get increased by same factor. The voltage V
also increases by same factor. Thus the ratio Q to V remains constant as C. Hence
capacitance is not the function of charge, field intensity, flux density and polential
difference.

5.12 Capacitors in Parallel
Key Point: When capacitors are in parallel, the same voltage exists across them, but
charges are different.
Q =GV, Q=0GV, Q;=GV
The total charge stored by the parallel bank of capacitors Q is given by,
Q=Q+Q;+Q3

G V+CV+CV=(C+C,+C,)V 1))
A Equivalent

+
Q, Q, Q:J_ | /
|+ +

c, c ;O

11t
1y
o
2 5 b

Ity
an

(a) (b)
Fig. 5.15 Capacitors in parallel



An equivalent capacitor which stores the same charge Q at the same voltage V, will
have

Q=CyqV o (2)
Comparing equation (1) and equation (2),
As ch = Cl + Q + CJ

Q=GV+GV+GYV
ltxsmsytoﬁndQ,,Q,andQ;foIsknown.
For ‘n capautorsmparallel,ceq-C,+C2+...+C“

5.13 Parallel Plate Capacitor

A parallel plate capacitor is shown in
the Fig. 5.16. It consists of two parallel
metallic plates separated by distance 'd'.
The space between the plates is filled with
a diclectric of permittivity €. The lower -Ps

Z
!
: Plate 2
1
plate, plate 1 carries the positive charge i
P |
°8, -
=2
]
1
3
12
N

density + pe. The upper plate, plate 2 E
carrics the negative charge and is g
distributed over its surface with a charge + +
density — ps. The plate 1 is placed in z = 0 / =
ie. xy planec hence normal to it is Plate 1
z-dircction. While upper plate 2isinz =d
plane, parallel to xy plane. Fig. 5.16

Let A = Area of cross section of the
plates in m-,

and is distributed over it with a charge - I

¥
__......
-———h
_-...
_:_Qr et i~
(=}

Q =psAC - (1)



This is magnitude of charge on any one plate as charge carried by both is equal in
magnitude. To find potential difference, let us obtain E between the plates.

Assuming plate 1 to be infinite sheet of charge,

E - Ps: _Ps;
E, = S N3, A V/m w (2)

The E, is normal at the boundary between conductor and dielectric without any
tangential component.
While for plate 2, we can write

E, = P53, =PS(a,) V/m - )
The dircction of E, is downwards ie. in -3, direction.

In between the plates,
E=E+E=08a,4085 0 g - (4)

Now dL = dx i, +dya, +dza, in Cartesian system.



z=0 p
Vi _é-i a, *[dxa, +dya +dza,]

z=d

z=0
7Ps o _ _Ps0_ Psl-d]
I edz" e[z]d" €

z=d
v = Psdy
e -
The capacitance is the ratio of charge Q to voltage V, h
. _ Q_psA -SA
C=vpa=TF - )
3
Thus if, € = gyE,
C = %‘3 F . (6)

It can be seen that the value of capacitance depends on,

1. The permittivity of the dielectric used.

2. The area of cross section of the plates.

3. The distance of separation of the plates.

It is not dependant on the charge or the potential difference between the plates.

5.14 Capacitance of a Co-axial Cable

Consider a co-axial cable or co-axial capacitor as shown in the Fig. 5.17.
Let a = Inner radius

b = Outer radius

The two concentric conductors are
separated by dielectric of permittivity €.

The length of the cable is L m.

The inner conductor carries a charge
density +p; C/m on its surface then equal
and opposite charge density -p; C/m exists
on the outer conductor.

Q= p.xL - (1)

Assuming cylindrical co-ordinate system, E
will be radial from inner to outer conductor,
and for infinite line charge it is given by, Fig. 5.17 Co-axial cable

I
B
I

(2



E is directed from inner conductor to the outer conductor. The potential difference is
work done in moving unit charge against Ei.c. fromr=b tor=a.

To find potential difference, consider dL in radial direction whch is dra,

* r=a
. e [ Fedi=_ [ PL = .avs
S V = JI: dL= I_2n£r ,*dra,
- r=b
i _pl. A Py a \
= 2m:[lnrt— !n[b
o Db b
3 V = mln = \' 3)
B, C = g: p"XL
2ne a
€ i g (&)
I [b
n —
a

5.15 Spherical Capacitor

Consider a spherical capacitor formed of
two concentric spherical conducting shells of >
radius a and b. The capacitor is shown in the
Fig. 5.18. /
The radius of outer sphere is b’ while _LE -
that of inner sphere is ‘2. Thus b > a. The ~ U7 A A 7)., <1 7
region between the two spheres is filled with
a dielectric of permittivity & The inner .
sphere is given a positive charge + Q while 4
for the outer sphere it is - Q. '
Considering Gaussian surface as a sphere ;
of radius r, it can be obtained that E is in Fig. 5.18 Spherical capacitor
radial direction and given by,

Q _
E = 4wza, V/m - (1)
The potential difference is work done in moving unit positive charge against the
direction of Eic. fromr=btor=a.

V = -f BedL=— [ -2 3. .dL @

1 S



Now dL = dra, ... In radial direction

vV = -7. Q,i,~dra, =-r=a-—-Q—2-dr
r,blhmr' r__.b-iner
- _-g.[_l]l"ﬂ —-g. 1]".
T ame| )., dme|7T].,
_ Q11
VvV = —4—'&[3 b]V . (3)
o Q. Q
Now C v 0 11
4 |a b
4ne .
C® ———= F _ ()

5.17 Energy Stored in a Capacitor

It is seen that capacitor can store the energy.
Let us find the expression for the energy stored
in a capacitor. ,

Consider a parallel plate capacitor as shown /* FEE ’\/;}f
in the Fig. 5.25. It is supplied with the voltage V. ;‘ fe ‘_‘/

Lot &y is the direction normal to the plates. i B

iy sl

il
e
<

The energy stored is given by, Fig. 5.25 Parallel plate capacitor
1

e|E[* av but |E| = ¥

2
=l v jdv but Idv=Volumc=Axd
vol vol




1—
)

If the dielectric is free space then there is increase in the stored encrgy if free space is
replaced by other dielectric having €, >1.

W = sCV?]

5171 Energy—Denéity
As scen in carlier chapter, energy density is the energy stored per unit volume as
volume tends to zero. .

Wy = 2 [ [E[ av
Vol
W = %EIEI J/m® = Energy density
Using lﬁl = b'El we can write,
=12
D — iy —
Wg = %-I—?I—=%|D“E| J/m?

7.3 Biot-Savart Law

Consider a conductor carrying a direct current I and a steady magneffic field produced
around it. The Biot-Savart law allows us to obtain the differential magnetic field intensity
dH, produced at a point P, due to a differential current clement IdL. The current carrying
conductor is shown in the Fig. 7.6.

__;;; Consider a differential length dL hence

L _ oz the differential current element is IdL. This is
TN\ very small part of the current carrying
conductor. The point P is at a distance R from
the differential current clement. The 0 is the
angle between the differential current element
f'l and the line joining point P to the

He differential current element.
Current The Biot-Savart law states that,
conductor The magnetic field intensity dH produced
Fig. 7.6 at a point P duc to a differential current
clement IdL is,

1. Proportional to the preduct of the current 1 and differential length dL.
2. The sine of the angle between the element and the line joining point P to the

clement.
3. And inversely proportional to the square of the distance R between point P and the
clement.

.--.F
dH

..
e
|



Mathematically, the Biot-Savart law can be stated as,

df o IdLsin 0
RZ
dii = ﬂdl.smo
RZ
where k = Constant of proportionality
= 1
In SI units, k = 4.1
df o lokem
4nR?

Let us express this equation in vector form.

Let dL = Magnitude of vector length dL and

' @y = Unit vector in the dircction from differential current

element to point P

yThen from rule of cross product,
diXay = dL|3g|sin 8=dL sin 0
Replacing in equation (3),
JH - ELXan A/
4nR?
_ R _R
But ap = i-i_i -*R-
Hence, dH = ldLX:l A/m
4nR"

The equations (4) and (5) is the mathematical form of Biot-Savart law.

w (1)

ws (2)

- (3)

.se |in| = l

. (8)

According to the direction of cross product, the direction of dH is normal to the plane
containing two vectors and in that normal direction which is along the progress of right
handed screw, turned from dL through the smaller angle © towards the line joining
element to the point P. Thus the direction of dH is normal to the plane of paper. For the
case considered, according to right handed screw rule, the direction of dH is going into

the plane of the paper.

The entire conductor is made up of all such differential elements. Hence to obtain total

magnetic field intensity H, the above equation (4) takes the integral form as,
- § IdLxag
4nR?

w (6)



l The closed line integral is required to ensure that

; P il all the current elements are considered. This is
1ydL Vi because current can flow only in the closed path,
7 provided by the closed circuit. If the current element
) "3 12 . is considered at point 1 and point P at point 2, as
l,{ 2 ® shown in the Fig. 7.7 then,
\ = _LdLixa
' - O Rt 3
Fig. 7.7 ==, ™ )
where I, = Current flowing through dL, at point 1
dLi = Differential vector length at point 1
agypz = Unit vector in the direction from element at point 1
to the point P at point 2
a :.'ilz. - :l.‘u
W
— I, dLiXa
H, = § L —-E2 A/m
S e+ -®

This is called integral form of Biot-Savart law.



7.3.1 Biot-Savart Law Interms of Distributed Sources

Consider a surface carrying a uniform
current over its surface as shown in the

K
Fig.7.8. Then the surface current density is
// // denoted as K and measured in amperes per
’ metre (A/m). Thus for uniform current
L\/}.\-——/b\-——i\.‘ density, the current I in any width b is
given by 1 = Kb, where width b is
perpendicular to the direction of current

Fig. 7.8 Surface current density flow.
Thus if dS is the differential surface area considered of a surface having current
density K then,

IdL = KdS - (9)
If the current density in a volume of a given conductor is J measured in A / m? then
for a differential volume dv we can write,
I1dL = Jdv ... (10)
Hence the Biot-Savart law can be expressed for surface current considering K dS while
for volume current considering J dv.

- KXdg dS
= -- A/m - (11
!; 4nR? / an
= _ iXal dv
and H = L e Mm - (12)

The Biot-Savart law is also called Ampere's law for the current element. Let us study
now the various applications of Biot-Savart law.

7.4 H due to Infinitely Long Straight Conductor

2 Consider an infinitely long
straight conductor, along z-axis.
The current passing through the
conductor is a direct current of 1
dr: Amp. The field intensity H at a
= point P is to be calculated, which
za, is at a dislance '’ from the z-axis.
This is shown in the Fig. 7.10.
o P Consider small differential
B r3, \ clement at point 1, along the
2 Point 2 z-axis, at a distance z from origin.

" 1 o
il t s IdL=1Idza, w (1)

Fig. 7.10 H due to infinitely long straight conductor



The distance vector joining point 1 to point 2 is R, and can be written as,

=-2za, +ra,
® R, - o 2
‘s ra -Za -
. B agn = = (———r = e (3)
™ a, a, a,
’; ‘s@ o di X Ek«lz = 0 0 dz =T qz i.
el r 0 =z . \
Fig. 7.11 3

While obtaining cross product, [Ry;| is neglected for convenience and must be
considered for further calculations.

!

IdL X gy = oRe - (@
r? 422
According to Biot-Savart law, dH at point 2 is,
df = IdLXag, _ I_r.dzio_i
RE  andiiez (eien)?
_ Irdza, -6

4Tt(l’2 +zz)3/2
Thus total field intensity H can be obtained by integrating dH over the entire length of

the conductor.
Irdza,

7 . (6)

dH= 1
= ,._“_-4x(r3 +z

Put z=rtan @ 2?=r’tan?0
x/2 Irrsec’ 0d0a,

o="ns2 4m(r? +r? tan? 0)

H =

3/2

®2  Ir?sec? 0d0d, I I
n- v=sec

3 a
0= /2 4nr sec’ 0
xt2 xl/2
I 1 I 2
= TR e j cos6d0 3,

G=-x/2 O=-n/2



L o e K m)
- = [sino]", &, =i [sm »i—sm(--z— ]] a,

= — [1=(-1D)]a, =ges A 0

dnr r
N A/
T 2mr e L )
B H = 2
B =p H=~2-':t—l; a, Wb/m ... (8)

The following observations arc important about H :

1. The magnitude of magnetic ficld intensity H is not a function of ¢ or z It is
inversely proportional to r which is the perpendicular distance of the point from the
conductor.

2. The direction of H is tangential i.e. circumferential along a,. This direction is going
into the plane of the paper at point P.

3. The streamlines i.c. magnetic flux lines are in the form of concentric circles around
the conductor. Thus if conductor is viewed from the top with I coming out of the paper
towards observer, then the streamlines are anticlockwise.

7.6 H at the Centre of a Circular Conductor

Consider the current carrying
conductor arranged in a circular form as
Point 2 shown in the Fig. 7.15.

The H at the centre of the circular
f?::dudori" loop is to be obtained. The conductor
" carries the direct current 1.
Consider the differential length dL at
a point 1.
The direction of dL at a point 1 is
tangential to the circular conductor at
Fig. 7.15 point 1.

Let 0 = Angle between I dL and ag;,

agpz = Unit vector in the direction of R,
R,, = Distance vector joining differential current element at
point 1 to point P at point 2 which is centre of circle.
Using the definition of cross product,
1dL X agy; = I|dL||agy| sin@ay = I dL sin 0dy o (1)



ay = Unit vector normal to the plane containing dL and gy,
i.e. normal to the plane in which the circular
conductor is lying )
According to Biot-Savart law, the differential magnetic field intensity dH at point P is,
1dLXag, IdLsingay

dH = = .. R = Ry, = Radius
4nRE 4nR? 2

Hence total magnetic field intensity H at point P can be obtained by integrating dH
around the circular closed path.

- e I1dLsin 62 Isin 0a
H=¢dH= LI N § dL .
§ § 4nR* 4nR? § @
But §dl. = Circumference of the circle = 21 R )
29
- Isin®2rRay Isin@ _
= 41[R2 = 2.R aN ose (4)

As 1dL is tangential to the circle and Ry, is the radius, anélc 0 must be 90°

Isin 90°
2R

a, = a, if the circular loop is placed in xy plane

el
[

5, = 'z'lﬁ iy A/m .. 5

Now B = poH ... for free space

The flux density B at centre of the circular conductor carrying direct current I, placed
in a free space is given by,

B = EZ—RQ': iN Wb/“'\2 s (6)




7.7 H on the Axis of a Circular Loop

Consider a circular loop
4 carrying a direct current I, placed in
xy plane, with z-axis as its axis as
shown in the Fig. 7.16. The magnetic
Point2 ¢ P field intensity H at point P is to be

obtained. The point P is at a distance

z from the plane of the circular loop,
[ along it’s axis.

The radius of the circular loop is
r. Consider the differential length dL

1
Y \\ of the circular loop as shown in the
- :y

O~ - Fig- 7.16.
r* A 3Re2 5 Rl 2
o -3, In the cylindrical co-ordinate
ﬁ dL PO.“ 1 system‘
dL=dra, +rdé¢a, +dza,
Fig. 7.16

But dL is in the planc for which r is constant and z = 0 = constant plane. The IdL 1s
tangential at point 1 in a, direction.
I1dL = Irdea, - (1)

The unit vector @y, is in the direction along the line joining differential current
element to the point P.

- 'Ez
a“n = em— - (2)
[Ro|
From the Fig. 7.17, it can be observed that,
oot 2 4P R, = —ra, +za, .. from 1 to 2
[Fal = (G =i
23,4 \g,, & -ra, +za
o gy v B £ « (3)
g VeZ 472
~%, _ a a, a,
Point 1 Now dLXag, =|0 rd¢ O |=zrdoa, +r? doa,
Fig. 7.47 L

Note that while calculating cross product [R),| is neglected for convenience, which must
be considered in further calculations. )



According to Biot-Savart law, the differential ficld strength dH at point P is given by,

1dLXag, I|zrdea, +ridea, |
4nRy Anyr? +22 (Yr2+22)?

dH = - (4)

Note that [Ry,| neglected while obtaining the cross product is considered in dH.
The total H is to be obtained by integrating dH over the circular loop ie. for ¢=0 to
2x. )

Note : It can be observed that though dH consists of two components a, and a,, due
to radial symmetry all 8, components are going to cancel cach other. So H exists only
along the axis in 2, direction. Let us prove this mathematically.

. FI|zra, +r*a,]do

H = o
.‘[o 4n(r? «»zz)?"2 2
I |F  zrdd _ % r?a,do
e A e R (6
ar {.-L, (rz+zz)3/2‘ ‘{0 (rz+zz)312] (6)

Consider first integral to prove that its value is zero due to radial symmetry.

T ozrde _ F  zrdd e

The unit vector 3, is expressed in rectangular co-ordinate system as

cos 0d, +sin¢a,.
n
Now J cos pdd

o=0

il

[sin 6[", =sin 2n-sin0=0

n
And | sin¢de
=0

[—cnsq:]:" =—cos2n—[-cos0)=-1+1=0

zrdgp  _
2N 5 0

&=0 (r2+zz)wz
This proves that H at P can not have any radial component.

n 2 2=
r d¢'—i _ Irta,

H=-L
‘l“.g,:u(rzﬁcz):hrz . 4ﬂ(r2+zz)

n
372 I do
o=0

Irta, [oy" _  Ir?2na,

4n(r’ +z? )3"‘1 _nlm:(r2 +z2 ) 32




2
H = Ir 5. Al e

2(1'2 +7‘2)3/2 =

where r = Radius of the circular loop

]

z = Distance of point P along the axis
Note : If point P is shifted at the centre of the circular loop i.e. z = 0, we get the result
obtained in earlier section.

e | T
H = —2-—(—;-)—3—/—2—31—-2731

A/m

where a, is the unit vector normal to xy plane in which the circular loop is lying.
7.8 Ampere's Circuital Law

In clectrostatics, the Gauss's law is useful to obtain the E in case of complex problems.
Similarly in the magnetostatics, the complex problems can be solved using a law called
Ampere's circuital law or Ampere's work law.

The Ampere's circuital law states that,

The line integral of magnetic field intensity H around a closed path is exactly equal to
the direct current enclosed by that path.

The mathematical representation of Ampere's circuital law is,
§ HedL = I ~ (1)

The law is very helpful to determine H when the current distribution is symmetrical.

7.8.1 Proof of Ampere’s Circuital Law
Consider a long straight conductor carrying direct current I placed along z axis as
shown in the Fig. 7.26. Consider a closed circular path of radius r which encloses the
straight conductor carrying direct current I. The point P is at a perpendicular distance r
from the conductor. Consider dL at point P which is in 3, direction, tangential to circular
path at point P.
‘ dL=r do7, v (2)



Fig. 7.26

While H obtained at point P, from Biot-Savart law duc to infinitely long conductor is,

y: O

PrTal
= g I _ _
H+dL = mﬂ.'fd@].
I I
T 2nr rdcb-ﬁd¢

Integrating H * dL over the entire closed path,
2
Hedl = _I =—l 2 =_l21[
g DL .{0 2 30=5710 =55

= I = Current carried by conductor

e (3)

This proves that the integral H*dL along the closed path gives the direct current

enclosed by that closed path.



7.9 Applications of Ampere's Circuital Law
Let us steady the various cases and the application of Ampere’s circuital law to obtain

H.

7.9.1 H due to Infinitely Long Straight Conductor

Fig. 7.27

Consider an infinitely long straight
conductor placed along z-axis, carrying a direct
current I as shown in the Fig. 7.27. Consider
the Amperian closed path, enclosing the
conductor as shown in the Fig. 7.27. Consider
point P on the closed path at which H is to be
obtained. The radius of the path is r and hence
P is at a perpendicular distance r from the
conductor.

The magnitude of H depends on r and the
direction is always tangential to the closed
path ie. a,. So H has only component in @,
direction say H,.

Consider elementary length dL at point P and in cylindrical co-ordinates it is r d¢ in a,

direction.

H = H,a, and dL=rd¢a,

H-dL = H,a,-rd¢a, =H, rdo
According to Ampere's circuital law,

}ﬁ-di

I
| Hy rde

=0

2=
H,,rj'da

80
H, r(2n)

H,

I

-]

]

.
2nr !

Hence H at point P is given by,

— _ i -
H = H‘I‘=ml‘ A;m




7.9.3 H due to Infinite Sheet of Current

Consider an infinite sheet of current in the z = 0 plane. The surface current density is
K The current is flowing in positive y direction hence K=K, a,. This is shown in the
Fig. 7.32.

A
Consider a closed path 1-2-3-4 as shown in t_l_l‘_q‘l-‘ig. 7.32. The width of the path is b
while the height is a. It is perpendicular to the direction of current hence in xz plane.

PR

The current flowing across the distance b is given by K, b

Le = Kb - (6)

Consider the magnetic lines of force due to the current in &, direction, according to
right hand thumb rule. These are shown in the Fig. 7.33.

H Hzncellng' each
x ca
/ — other
] g
z 1 Position 1
1} ‘Hz '

L : H,
A S V@ _H‘f //l"”'”'2
LA 3

¥ -H,

Current direction

(a) (b)
Fig. 7.33



In Fig. 7.33 (b), it is clear that in betwecen two very closely spaced conductors, the
components of H in z direction are oppositely directed (-H, for position 1 and +H, for
position 2 between the two positions). All such components cancel each other and hence H
can not have any component in z direction.

As current is flowing in y direction, H can not have component in y direction.

So H has only component in x direction.

H = H, a, wforz>0 - (7 @)
= -H,a ..forz<0 w (7 (b))

Applying Ampere's circuit law,
§ HedL = I e (8)

Evaluate the integral along the path 1-2-3-4-1.

For path1-2, dL=dza,,

For path 34, dL=dza,

But H is in x direction while @, *3, = 0.

Hence along the paths 1-2 and 34, the integral § H* dL = 0.
Consider path 2-3 along which dL = dx a .

f HedL = i (-H,a,)+(dxa,) = H,j dx = bH,
p3 2 2

The path 2-3 is lying in z < 0 region for which H is —H, a,. And limits from 2 to 3,
positive x to negative x hence effective sign of the integral is positive.
__ Consider path 4-1 along which dL = dx &, and it is in the region z > 0 hence
H=Il_a,.

j HedL = j (H, L)-(dxix):ij‘ dx = bH,
4 1 ]

$ HedL = bH, +bH, =2bH, e (9)

Equating this to I, in equation (6),

2bH, = K, b
1
H, = 1K .. (10)
Hence, H = %— Koa, for z>0 -~ (11 (a))
1 -
g K,a, for z<0 .. (11 (b))



In general, for an infinite sheet of current density K A/m we can write,

= 1 a_
H = 5 KXay - (12)
where dy = Unit vector normal from the current sheet to the point
at which H is to be obtained.

8.2 Force on a Moving Point Charge

According to the discussion in the previous chapters, a static cleclric field E exerts a
force on a static or moving charge Q. Thus according to Coulomb’s law, the force Fe
excrted on an clectric charge can be obtained. The force is related to the electric field

intensity E as,

Fe=QE N - (1)

For a positive charge, the force excrted on it is in the direction of E This force is also
refered as electric force (Fe ).

Now consider that a charge is placed in a stecady magnetic field. It experiences a force
only if it is moving. Then a magnetic force (l'm) exerted on a charge Q, moving with a
velocity 7 in a steady magnetic field B is given by,

Fmn =Q7%xB N .. (@

The magnitude of the magnetic force Fm is directly proportional to the magnitudes of
Q, ¥ and B and also the sinc of the angle between ¥ and B. The direction of Fm is

perpendicular to the plane containing ¥ and B both, as shown in the Fig. 8.1.



Plane
containing
vand B

a,, : Normal to the plane

Fig. 8.1 Magnetic force on a moving charge in magnetic field

From equation (1) it is clear that the electric force Fe is independent of the velocity of
the moving charge. In other words, the electric force exerted on the moving charge by the
electric field is independent of the direction in which the charge is moving. Thus the
electric force performs work on the charge. On the other hand, the magnetic force Fm is
dependent on the velocity of the moving charge. But Fm cannot perform work on a
moving charge as it is at right angie to the direction of motion of charge. (F+d L=0).

The total force on a moving charge in the presence of both electric and magnetic ficlds
is given by,

F=i:e+?m =QG+5 X§) N ...(3)

Above equation is called Lorentz Force Equation which relates mechanical force to the
clectrical force. If the mass of the charge is m, then we can write,

ﬁ=m5=m‘z_t5=Q(‘E+vx‘n) N - (4)

8.3 Force on a Differential Current Element

The force exerted on a differential element of charge dQ moving in a steady magnetic
field is given by,

dF = dQ7 XB N - (1)

The current density J can be expressed interms of velocity of a volume charge density
as,

J=p.7 )

But the differential element of charge can be expressed in terms of the volume charge
density as,

dQ = p. dv .. ()
Substituting value of dQ in equation (1),



df = p,dvix B
Expressing dF interms of | using equation (2), we can write,
dF = Jx B dv e (4)

But we have alrcady studied in previous chapters, the relationship between current
element as,

Jdv = KdS=1dL

Then the force exerted on a surface current density is given by,

dF = KxB d§ o (5)
Similarly the force exerted on a differential current element is given by,
dF = (1dLx B) e (6)
Integrating equation (4) over a volume, the force is given by,
F = I Jx Bdv w ()
vol

Integrating equation (5) over ecither open or closed surface, we get,
F=|KxBadas . (8)
s

Similarly integrating equation (6) over a closed path, we get,

f=§ldf.xl—3 - 9

If a conductor is straight and the field B is uniform along it, then integrating equation
(6) we get simple expression for the force as,

F=ILxB - (10)
The magnitude of the force is given by,
F=ILBsin0 - (11)

Actually the magnetic field exerts a magnetic force on the clectrons which constitutes
the current I But these electrons are part of the conductor, this magnetic force gets
transfered to the conductor lattice. Now this transfered force can perform work on a
conductor as a whole.



8.4 Force between Differential Current Elements
While discussing the electrostatic fields, we have studied that a point charge exert:

force on another point charge, separated by
distance R. If these charges are of same type
(ie. both positive or negative), then they
repel each other. But when two charges are
of different type (i.e. one positive and other
negative), then they attract each other.

Now consider that two current carrying
conductors are placed parallel to each other.
Each of this conductor produces its own flux
around it. So when such two conductors are
placed closed to cach other, there exists a
force due to the interaction of two fluxes. The
force between such parallel current carrying
conductors depends on the directions of the
two currents. If the directions of both the
currents are same, then the conductors
experience a force of attraction as shown in
the Fig. 8.2 (a). And if the directions of two
currents are opposite to each other, then the
conductors experience a force of repulsion as
shown in the Fig. 8.2 (b).

Let us now consider two current
clements I, dL1 and 1,dL; as shown in the

41, | YA A
E

r F
- - -

(a) (b)

Fig. 8.2 Force between two parallel
current carrying conductors

) "
P
Ry
I =

Fig. 8.3 Force between two
current elements

Fig. 8.3. Note that the directions of I, and [, are same.

Both the current elements produce their own magnetic fields. As the currents are
flowing in the same direction through the elements, the force d(dF1) exerted on element
[,dLi due to the magnetic field dB2 produced by other element I,dLz is the force of

attraction.

From the equation of force the force exerted on a differential current element is given

by,
d(dF1) = L,dT1xdB:

(1)

According to Biot-Savart's law, the magnetic field produced by current element 1,d L2

is given by, for free space,



= — I diz Xim‘
dB2 = pgdH2 =p, [—z—-———-—-,——] w (2)
4nR3,

Substituting value of dB2 in equation (1), we can write,

Id L X(1,dL2Xagy )

d(dF) = p, s - (3)
21

The equation (3) represents force between two current elements. It is very much

similar to Coulomb's law. By integrating d(d F,) twice, the total forcc Fi on current
element 1 due to current element 2 is given by,

TIN5 | dis x(dLla Xagy )
S 04:; *$ ¢

. (8)

2

Exactly following same steps, we can calculate the force F2 exerted on the current
element 2 due to the magnetic field B: produced by the current element 1. Thus,

dLa x(dl; xa
( = n) .. (5

o I, I
Fz=£%%-¢§§

L2 1)

Actually equation (5) is obtained from equation (4) by interchanging the subscripts 1 '
and 2. By using back-cab rule for expanding vector triple product, we can show that

Fo = -F , .. (6)
Thus, above condition indicates that both the forces F1 and F2 obey Newton's third
law that for every action there is equal and opposite reaction.

For the two current carrying conductors of length I each, the force exerted is given by

_ul Il
Fe w X0}

where I, and [, are the currents flowing through conductor 1 and conductor 2 and d
is the distance of scparation between two conductors.

If the two currents flow in same directions, the current carrying conductors attract

cach other. While if, the two currents flow in opposite direction to each other, the current
carrying conductors repel each other.



8.5.2 Magnetic Dipole Moment

The magnetic dipole moment of a current loop is defined as the product of current
through the loop and the area of the loop, directed normal to the current loop. From the
definition it is clear that, the magnetic dipole moment is a vector quantity. It is denoted by
m. The direction of the magnetic dipole moment m is given by the right hand thumb rule.
The right hand thumb indicates the direction of the unit vector in which m is directed and
the figures represents the current direction. The magnetic dipole moment is given by

m = (IS)a, A-m? w (12)

In the previous section we have obtained the expression for the torque along the axis
of rotation of a planar coil as,

T = BIS(-3,)
Using definition for the magnetic dipole moment, the torque can be expressed as,
T=mXB Nm .. (13)

Above expression is in general applicable in calculating the overall torque on a planar
loop of any arbitrary shape. But the basic requirement is that the magnetic field must be
uniform. The torque is always in the direction of axis of rotation. When the planar loop or
coil is normal to the mangetic field, the sum of the forces on the planar loop as well as the
torque will be zero.

8.8 Magnetic Boundary Conditions

The conditions of the magnetic field existing at the boundary of the two media when
the magnetic field passes from one medium to other are called boundary conditions for
magnetic ficlds or simply magnetic boundary conditions. When we consider magnetic
boundary conditions, the conditions of B and H are studied at the boundary. The
boundary betwcen the two different magnetic materials is considered. To study conditions
of B and H at the boundary, both the vectors are resolved into two components ;

a) Tangential to boundary and
b) Normal (perpendicular) to boundary.

Consider a boundary between two isotropic, homogencous linear materials with
different permeabilities p; and p, as shown in the Fig. 8.14. To determine the boundary
conditions, let us use the dosed path and the Gaussian surface.
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Fig. 8.14 Boundary between two magnetic materials of different permeabilities
8.8.1 Boundary Conditions for Normal Component

To find the normal component of B, select a closed Gaussian surface in the form of a
right circular cylinder as shown in the Fig. 8.14. Let the height of the cylinder be Ah and
be placed in such a way that Ah/2 is in medium 1 and remaining Ah/2 is in medium 2.
Also the axis of the cylinder is in the normal direction to the surface.

According to the Gauss's law for the magnetic field,
§§-d§ =0 . (1)
s

The surface integral must be evaluated over three surfaces, (i) Top, (ii) Bottom and
(iii) Lateral.
Let the area of the top and bottom is same, equal to AS.
~ ¢ B-dS+ § B-dS+ § B-dS =0 - (2)
top bottom lateral

As we are very much intetrested in the boundary conditions, reduce Ah to zero. As
Ah — 0, the cylinder tends to boundary and only top and bottom surfaces contribute in the
surface integral. Thus surface integrals are calculated for top and bottom surfaces only.
These surfaces are very small. Let the magnitude of normal component of B be By, and
By, in medium 1 and medium 2 respectively. As both the surfaces are very small, we can
assume By, and By, constant over their surfaces. Hence we can write,

For top surfaces :
$ B-dS = By, § dS=By,aS -3
Top Top

For bottom surface
¢ B+dS = By, § dS=By,AS - (4)

Botlom Bottam



For lateral surface

§ B+dS = 0 - (5)
Lateral

FPutting values of surface integrals in equation (2), we get
BN]AS—BMB b 0 .. (6)
Note that the negative sign is used for one of the surface integrals because normal

component in medium 2 is entering the surface while in medium 1 the component is
leaving the surface. Hence By, and By, are in opposite direction.

From equation (6), we can write,

BNlAs = BNZAS

ie. BN] o BNz ...(7)

Thus the normal component of B is continuous at the boundary.
As the magnetic flux density and the magnetic field intensity are related by
B = pH
Thus, equation (7) can be written as,
mHy, = pHy,
My _ M2 _Mp

Hpy, My Hn - (8)

Hence the normal component of H is not continuous at the boundary. The field
strengths in two media are inversely proportional to their relative permeabilities.

8.8.2 Boundary Conditions for Tangential Component
According to Ampere's circuital law,

§‘H-di =1  (9)

Consider a rectangular closed path abcda as shown in the Fig. 8.13. It is traced in
clockwise direction as a-b-c-d-a. This closed path is placed in a plane normal to the
boundary surface. Hence § H-dL can be divided into 6 parts.

§ Fi-dT = [H-dL+ [FedLs[HedLs[Hedls [Hedl+]H-dL = . (0
1 <

q-'—-.—
ﬂ.b\N
BN S—



From the Fig. 8.14 it is clear that, the closed path is placed in such a way that its two
sides a-b and e-d are parallel to the tangential direction to the surface while the other two
sides are normal to the surface at the boundary. This closed path is placed in such a way
that half of its portion is in medium 1 and the remaining is in medium 2. The rectangular
path is an clementary rectangular path with elementary height Ah and clementary width
Aw. Thus over small width Aw, H can be assume constant say H,,, in medium 1 and

HminmcdiumzSimilarlyOVerasmallhdghtAzh,ﬁcanbeassumedconstantsayHm

in medium 1 and Hy, in medium 2. Now assume that K is the surface current normal to
the path. Also from the Fig. 8.14 it is clear that the normal and tangential components in
medium 1 and medium 2 are in opposite direction. Thus equation (10) can be written as,

Kedw = H_,, (Aw)+Hy, (%)»Hm (A—zh- )—Hm(Aw)

e (éhz.)_um [%h_) . (1)

To get conditions at boundary, Ah — 0. Thus,
Kedw = H,u(Aw)-H, . (AW)
Hym ~Hum = K .. (12)
In vector form, we can express above relation by a cross product as



Hy ~Hyeo = ay, XK - (13)

where 3y, is the unit vector in the direction normal at the boundary from medium 1
to medium 2.

For B, the tangential components can be related with permeabilities of two media
using equation (12),

Bum _Bunz _ g w (14)
K,y K2

Consider a special case that the boundary is free of current. In other words, media are
not conductors; so K = 0. Then equation (12) becomes

Hym ~Hua = 0

or ML, = Hg, ... (15)
For tangential components of B we can write,
Bum _Bum _ ¢
Hy H2
Bam _ Bunm
Ky H2

Bunl - Ky _l‘lrl
Bunz H2 Hp

From equations (15) and (16) it is clear
that tangential component of H are
continuous, while tangential component of B
are discontinuous at the boundary, with the
condition that the boundary is current free.

Let the fields make angles o, and o,
with the normal to the interface as shown in
the Fig. 8.15.

Interms of angle o, and a,, we can write
relationship between normal components and
tangential components of B.

Fig. 8.15 Component of B at boundary

In medium 1,

tana; = % w (17)
Similarly in medium 2,

tano, = Burz - (18)



Dividing equation (17) by equation (18)
tanu, B, Bn

tan a3 Bni Buanz

As we know, By, =By,

tana‘ .- B'.“ =b!-

tan o, B Mp

.. (19)

Consider an interface between air (medium 1) and soft iron (medium 2) For air,
K. =1. For soft iron, let p, =7000. Then

Bunz tana, 7000

If o, =85°, then @, =0.093° and B, =0.

Thus practically when fields cross a medium of high p, to low p,, then the magnetic
ficlds B and H arc always perpendicular to the boundary.

Magnetic Scalar and Vector Potentials:
In studying electric field problems, we introduced the concept of electric potential that simplified the

computation of electric fields for certain types of problems. In the same manner let us relate the
magnetic field intensity to a scalar magnetic potential and write:

FXH =T e (4.22)
Therefore, I ot ) oA (4.23)
But using vector identity, V(W) =0 we find that = ™" is valid only where J =0, Thus

—

the scalar magnetic potential is defined only in the region where < =U. Moreover, Vi in general is
not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown
in fig _ 4.8.

In the region %€ b J =0 ang 27




Fig. 4.8: Cross Section of a Coaxial Line
If Vim is the magnetic potential then,

__ 18
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If we set V=0 at #= " then c=0 and 27T

LAt @=g@ =—i¢%
27T

We observe that as we make a complete lap around the current carrying conductor , we reach &
again but Vi, this time becomes

Vo= = +2)

2

We observe that value of Vi, keeps changing as we complete additional laps to pass through the same
point. We introduced Vmanalogous to electostatic potential V. But for static electric

fields, ¥XZ=0  and pE =0

R - 3
field ¥ *H& =0 wherever J =0 but EP

: whereas for steady magnetic

di=1 L . :
even if J =0 along the path of integration.

We now introduce the vector magnetic potential which can be used in regions where current
density may be zero or nonzero and the same can be easily extended to time varying cases. The use
of vector magnetic potential provides elegant ways of solving EM field problems.

. Z _— ~ 7 [¥xd)=0
Since ¥.5 =0 and we have the vector identity that for any vector 4, ( ) , We can

write b=Vx4

Here, the vector field 4 s called the vector magnetic potential. Its SI unit is Wb/m. Thus if can

—

find 4 of a given current distribution, £ can be found from - through a curl operation.

We have introduced the vector function Aand related its curl to 5. A vector function is defined
fully in terms of its curl as well as divergence. The choice of i rfade as follows.



TxTxd=gFxH =i (4.24)

Great deal of simplification can be achieved if we choose VA=0

Putting T A= Cwe  get ViA=-ud which is  wvector poisson  equation.
In Cartesian coordinates, the above equation can be written in terms of the components as
R (4.27a)
Vi S (4.27b)
VA = AT (4.27¢)

for which the solution is

V=LJE@', R=| -7
47 R

In case of time varying fields we shall see that dt | which is known as Lorentz
condition, V being the electric potential. Here we are dealing with static magnetic field, so *-4=0

By comparison, we can write the solution for Ax as
Hoady

= ey
R s

Computing similar solutions for other two components of the vector potential, the vector potential
can be written as



This equation enables us to find the vector potential at a given point because of a volume current
density " . Similarly for line or surface current density we can write

ﬁ=£J‘Ecﬁs'
AR (4.33)

The magnetic flux % through a given area S is given by
= ‘!Ed;

Substituting B=Vx4
w=!TXEdE=$ﬁdf

Vector potential thus have the physical significance that its integral around any closed path is equal

to the magnetic flux passing through that path.

Inductance and Inductor:

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We

have already discussed about the parameters resistance and capacitance in the earlier chapters. In this

section, we discuss about the parameter inductance. Before we start our discussion, let us first
introduce the concept of flux linkage. If in a coil with N closely wound turns around where a current

| produces a flux % and this flux links or encircles each of the N turns, the flux linkage £ is defined

as 4= nalinear medium, where the flux is proportional to the current, we define the self
inductance L as the ratio of the total flux linkage to the current which they link.

To further illustrate the concept of inductance, let us consider two closed loops C; and Cz as shown
in the figure 4.10, S; and S; are respectively the areas of C; and C; .



Fig 4.10

if a current I1 flows in Cy1 , the magnetic flux B1 will be created part of which will be linked to C; as
shown in Figure 4.10.

In a linear medium, s is proportional to I 1. Therefore, we can write

#iy = Lypdy (4.49)

hp=Nadha (4.50)
and Mg =Lpl)
A
Loy =—
OF oo L e (4.51)

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to
the current flowing in the first circuit.

As we have already stated, the magnetic flux produced in Cygets linked to itself and
if C1 has Nz turns then Ay = Mgy , Where % is the flux linkage per turn.

Therefore, self inductance

Ly (or Las defined earlier) _ 1 (4.52)

As some of the flux produced by 11 links only to C: & not Co.



Ay =Ny > Mgy = Ay (4.53)

Further in general, in a linear medium,
Example 1: Inductance per unit length of a very long solenoid:

Let us consider a solenoid having n turns/unit length and carrying a current 1. The solenoid is air
cored.

JaYaTaTatatalin
ViViVIViViVARE

The magnetic flux density inside such a long solenoid can be calculated as

Fig 4.11: A long current carrying solenoid

B-pplas (4.54)

where the magnetic field is along the axis of the solenoid.

If S is the area of cross section of the solenoid then

.. The inductance per unit length of the solenoid
A ’
L=—=pn'y
7 0
Example 2: Self inductance per unit length of a coaxial cable of inner radius 'a" and outer radius 'b'.
Assume a current | flows through the inner conductor.

Solution:

Let us assume that the current is uniformly distributed in the inner conductor so that inside the inner
conductor.



and in the region,

Let us consider the flux linkage per unit length in the inner conductor. Flux enclosed between the
region © and ©* 92 (and unit length in the axial direction).

dd = ﬂL}zdF‘
7 O (4.60)
o
Fraction of the total current it links is &
i o
dh, =22 g
2
=), oo FEe=_—
02T a BIT e (4.61)
Similarly for the region & =2 =#
d
df="2"do=dl
T (4.62)
Ae .'u-l:lf .I-ad_-'c}z.'{'{ﬂfl 'E:l
& L L (4.63)
Total linkage A=b+4,



L= Aith, = ﬂ[lﬂn [éﬂ
The self inductance,................. L R = N (4.65)

Here, the first term=Fises from the flux linkage internal to the solid inner conductor and is the
internal inductance per unit length.

In high frequency application and assuming the conductivity to be very high, the current in the
internal conductor instead of being distributed throughout remain essentially concentrated on the
surface of the inner conductor ( as we shall see later) and the internal inductance becomes negligibly
small.

Example 3: Inductance of an N turn toroid carrying a filamentary current 1.

Fig 4.12: N turn toroid carrying filamentary current I.

Solution: Magnetic flux density inside the toroid is given by

Let the inner radius is 'a’ and outer radius is 'b". Let the cross section area 'S' is small compared to the

a+h
. A=
mean radius of the toroid
Then total flux

and flux linkage



LIS
= (4.68)

A=

The inductance

L

_ A udy
L 20 o (4.69)

Energy stored in Magnetic Field:

So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that
work is required to be expended to assemble a group of charges and this work is stated as electric
energy. In the same manner energy needs to be expended in sending currents through coils and it is
stored as magnetic energy. Let us consider a scenario where we consider a coil in which the current
is increased from 0 to a value I. As mentioned earlier, the self inductance of a coil in general can be
written as

PRI
di di s (4.70a)
or LA=NAD (4.70h)

If we consider a time varying scenario,

r_ gy
dt A e (4.71)
a¢
We will later see that ¢ is an induced voltage.
LV=LE-

df js the voltage drop that appears across the coil and thus voltage opposes the change of
current.

Therefore in order to maintain the increase of current, the electric source must do an work against
this induced voltage.

AW =i dt
=Lidi (4.72)



oo 1
W= Lidi=-LI
& 0 2 (Joule)....coevireiieiieeiei, (4.73)
which IS the energy stored in the magnetic circuit.
We can also express the energy stored in the coil in term of field quantities.

For linear magnetic circuit

W:l@ﬁ:lmﬁ
2 I 2 e (4.74)

Now, s e, (4.75)

where Ais the area of cross section of the coil. Iflis the length of the coil

NI = Hi
1
L W=—=HBAI
2 s (4.76)
Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit volume
is given by
_F_1
TUAL 2 (4.77)
In vector form
[
W, =—B.H
2 N (4.78)

is the energy density in the magnetic field.



Faraday's Law of electromagnetic Induction

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop
when the magnetic flux linking the loop changed. In terms of fields, we can say that a time varying
magnetic field produces an electromotive force (emf) which causes a current in a closed circuit. The
quantitative relation between the induced emf (the voltage that arises from conductors moving in a
magnetic field or from changing magnetic fields) and the rate of change of flux linkage developed
based on experimental observation is known as Faraday's law. Mathematically, the induced emf can
be written as

_a¢
Emf= dt Volts (5.3)

where # is the flux linkage over the closed path.

¢

A non zero n#y result due to any of the following:

(@) time changing flux linkage a stationary closed path.
(b) relative motion between a steady flux a closed path.
(c) a combination of the above two cases.

The negative sign in equation (5.3) was introduced by Lenz in order to comply with the polarity of
the induced emf. The negative sign implies that the induced emf will cause a current flow in the
closed loop in such a direction so as to oppose the change in the linking magnetic flux which
produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming a
loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux
linking the coil induces an emf in each turn of the coil and total emf is the sum of the induced emfs
of the individual turns, i.e.,



_w&e
Emf = dt  \olts (5.4)

By defining the total flux linkage as
A=Ng (5.5)
The emf can be written as

_d4
Emf= dt (5.6)

Continuing with equation (5.3), over a closed contour 'C' we can write

Edi
Emf = e (5.7)

—

where £ is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by

&= lE.dE -

Where S is the surface for which 'C' is the contour.

From (5.7) and using (5.8) in (5.3) we can write

§.Edi=-2qFas

(5.9)
By applying stokes theorem
[ VX Eds = il 98 i
. 5 o (5.10)
Therefore, we can write
VHE = —E
o (5.11)

which is the Faraday's law in the point form



d
We have said that non zero ¢én be produced in a several ways. One particular case is when a
time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary
closed path by a time varying magnetic field is called a transformer emf .

Example: Ideal transformer
As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled magnetically

through a common core. Let us consider an ideal transformer whose winding has zero resistance, the
core having infinite permittivity and magnetic losses are zero.

N —
LR er (1)
L
o \
Primary
winding Sceondary
winding

Core

Fig 5.1: Transformer with secondary open

These assumptions ensure that the magnetization current under no load condition is vanishingly
small and can be ignored. Further, all time varying flux produced by the primary winding will follow
the magnetic path inside the core and link to the secondary coil without any leakage. If N1 and N are
the number of turns in the primary and the secondary windings respectively, the induced emfs are

g =M, @

dt (5.12a)
ey = I, @

dt (5.12b)

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end
of the winding.)

8 _ M

e N (5.13)



I.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under
ideal condition, the induced emf in either winding is equal to their voltage rating.

v _ M

—_ ==

v: N (5.14)

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the current
flows in the secondary, which produces a flux opposing the original flux. The net flux in the core
decreases and induced emf will tend to decrease from the no load value. This causes the primary
current to increase to nullify the decrease in the flux and induced emf. The current continues to
increase till the flux in the core and the induced emfs are restored to the no load values. Thus the
source supplies power to the primary winding and the secondary winding delivers the power to the
load. Equating the powers

WM =3y (5.15)

Bb_ovw_a_M

vy gy M (5.16)
Further,
By~ M=0 (5.17)

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal
condition.

Motional EMF:

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2.

=1 Os

++

Fig 5.2
If a charge Q moves in a magnetic field B , it experiences a force

F=QvxB (5.18)



This force will cause the electrons in the conductor to drift towards one end and leave the other end
positively charged, thus creating a field and charge separation continuous until electric and magnetic
forces balance and an equilibrium is reached very quickly, the net force on the moving conductor is
zero.

=yx B
can be interpreted as an induced electric field which is called the motional electric field

o ol

ol

w =VvXE (5.19)

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit
@ vxBdi _ _ .

is ?{V . This emf is called the motional emf.

A classic example of motional emf is given in Additonal Solved Example No.1 .

Maxwell's Equation

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For time
varying case, the relationship among the field vectors written as

‘Fxﬁ = —E

at (5.20a)
VxH=J (5.20b)
v.D=p (5.20¢)
VE=0 (5.20d)

In addition, from the principle of conservation of charges we get the equation of continuity

vi--2
olf (5.21)
The equation 5.20 (a) - (d) must be consistent with equation (5.21).

We observe that

VVXHE =0=V.J (5.22)

Since V.¥*4 s zero for any vector 4.

o0 0
Thus ¥ >/ =.J applies only for the static case i.e., for the scenario when &
A classic example for this is given below .



Suppose we are in the process of charging up a capacitor as shown in fig 5.3.

Balloon shaped Amperian Loop

surinee

Fig 5.3

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. lenc = | is the total current
passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes
through this surface and hence lenc = 0. But for non steady currents such as this one, the concept of
current enclosed by a loop is ill-defined since it depends on what surface you use. In fact Ampere's
Law should also hold true for time varying case as well, then comes the idea of displacement current
which will be introduced in the next few slides.

We can write for time varying case,

v, (WE) B
Az
—Vi+—TD
Az 3
~ an
I R
f (5.23)
CuxF=F+08
at (5.24)

The equation (5.24) is valid for static as well as for time varying case.

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field even in
3D
7 o, . . ... (ﬂfmz) .
the absence of + . The term @ has a dimension of current densities and is called the
displacement current density.

3D
Introduction of & in ¥ *H equation is one of the major contributions of Jame's Clerk Maxwell.
The modified set of equations

3 (5.25a)



THE = J+=

at (5.25h)
V.i=p (5.25¢)
VE=0 (5.25d)

is known as the Maxwell's equation and this set of equations apply in the time varying scenario,

)
—=1
static fields are being a particular case (a*f :

In the integral form

B4 08
g Edi--[~ P 5260
Hdi- J+— af-1+ 122 45
f. J [ I (5.26b)
[,VDav=¢,Dds = [ pdv (5,260

foas=0 (5.260)

The modification of Ampere's law by Maxwell has led to the development of a unified
electromagnetic field theory. By introducing the displacement current term, Maxwell could predict
the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz
experimentally which led to the new era of radio communication.



10.2 General Wave Equations

In general the wave equations can be obtained by relating the space and time
variations of the electric and magnetic fields, using the Maxwell's equations.

To obtain general wave equations, let us assume that the electric and magnetic fields
exist in a linear, homogeneous and isotropic medium with the parameters p; € and o. Also
assume that the medium is source free which clearly gives the idea about the charge free
medium. Assume that the medium obeys the ohm's law i.e. ] = o E. Then the Maxwell's

equations are given by,

VxE = - —aa—?- ..-(1)

VxH = cT:‘.H:% ...(2)

V.B =0 ie VH=0 --(3)

; V.D = 0 ie. V.E=0 ...(4)
To eliminate H from equation (1), taking curl on both the sides of equation (1), we get,
Vx(VxXE) = -u[Vx%—;ﬁ-] «..(5)

V operates indicates differentiation with respect to space while -% operates

differentiation with respect to time. Both are independent of each other, the operators can
be interchanged.

So we get,
VXVXE = —p.-%(Vxﬁ) (6)

Substituting value of V x H from equation (2), we get,

VXxVXE = -u%[ofh e%?]

VXVXE = -uo-a;-ue% 7)
Now according to the vector identity,

VxVxE = V(V.E)-V2E ...(8)
Substituting V.E = 0 from equation (4), we can modify equation (8) as,

VxVxE = -V?E ...(9)

Substituting value of VxV x E from equation (9) in equation (2) we get,



_V2E OE_ O°E

1
=
Q
il &;I
|
=
™
&
»~N

= 2E
V2E = uo%t—ﬂxe?—-E ...(10)

This is the wave equation for the electric field E. Now multiplying both the sides of
equation (10) by &

- deE 9%cE
2 @ . bl
V*(€E) = po 5 THE 32
- aD  9°D
. 2 -
ie VD = uo—at U E—fr 3 ...(11)

This is the wave equation for D in uniform medium.
Exactly on the similar lines, the wave equation for H can be obtained by taking curl on
both the sides of equation (2), we get, _

Vx(VxH) = Vx(oE)-H—:anaf .(12)

As V operator and 3- represent independent relationship between the two, we can

interchange them as follows.
VxVxH = o(VxE)+e -—(VxE) ...(13)

Substituting VX E = —pt —— aa? in equation (12), we get,

VxVxH = ({-u%] p{ uaa?]
VxVxH = —uo—a—‘! pe%}—l- --(14)

From the vector indentity,
VxVxH = V(V.H)-V2H
Substituting V. H = 0 from equation (4) in equation (15), we get

...(15)

VxVxH = -V’H ...(16)
Substituting value of VxVx H in equation (14) we get,
-V*H = ‘“’7;1 "‘aa?
. — °H
ie. V“H = uoTﬂnT ...(17)

This is the wave equation for the magnetic field H. Now multiplying both the sides by

H, we get,
- ouH 9%(uH)
2 =
V@ H) Ho 3t + e 3




...(18)

This is the wave equation for D in the uniform medium. Hence in general we can
write,

a.l
+0 &

v? = ...(19)

= uo‘a

o X Ol m
o X Ol ml

Above equation is three dimensional equation for all the field vectors.

9.2 Uniform Plane Wave in Free Space

Assume an electromagnetic wave travelling in free space. Consider that an electric
field is in x-direction; while a magnetic field is in y-direction. Both the fields will not
vary with x and y; but with z only. They will also change with time as the wave
propagates in free space.

Consider Maxwell's equation expressed in E and H as

T _ 7.9D
VxH = J+-(_)T
Let us assume that a free space is perfect dielectric, then J =0,
vxH = 22

ot



Expressing D in rectangular co-ordinate system,

= 0 & < =

Writing curl of H on left of equation,

[ou, aH,,]_ [aH, aH,]_ [aH, BH.]_
- + + - a,

oz |'* 7|3z ox | | Tox oy

oy
© DB, +D; ¥ +Dil

é't'[ ‘a,+ yay+ zaz]

As H is in y-direction, Hy =H, =0,

‘ ('.’Hy = aH_V - o = = -
Lo A b A =a[D,a.+Dyay+D,a,]

JH
Also Hy is not changing with x, as it is uniform in x-y plane, so a—x" =0
o0Hy _ a = = 2
-a_zy ax = 5?[0!" +Dy ay +Dza;]

Equating L.H.S. and R.H.S. of above equation directionwise, we can write,

_0H, _ aD,
2z ot

dH,  JE, —_

~2z - ® ot Dex8

oH, 2K,

s B ) s o 6 |
oz " ot M

Now consider Maxwell's equation derived from Faraday's law,
= 2B
V X E - "a—t-
Using rectangular co-ordinate system, we can write,

0B, 0E,|. [0E. 0E.]. [oE. 9B/ ].
dz dy | " ez ox|Y |ay ox |*

= -ait[B,‘i,‘ +By iy +‘Bzix]




As E is in x-direction, Ey =E, =0,
OBy _  OE,_

d - - "

Also component E, is not varying with y, as it is uniform in x-y plane, so % =0,
0By o) = - -
-a—z" Ay = = [Bxa. +Byay +B,3,]

Equating L.H.S. and R.H.S. of above equation directionwise, we can write,

JE. _ 0B,
dz  at
37 = -u T B-uH
éHy 1 3E,
el e T - (2)
Differentiating equation (1) with respect to t,
a [6Hy | @%E,
5] - =5 .

Now differentiating equation (2) with respect to z,
8 [aHy] _ 1 0%E,

z| ot | = "k oz =i

Now observe L.HS. of equations (3) and (4). As we can change order of
differentiation, L.H.S. of equations (3) and (4) is same. So equating R.H.S. of both the
equations,

(2B _ 192K,
ot? u oz?
az E‘ 1 az EX

= « (5
ot? pe 9z2 ©)

According to the results in physics,
1

VD = =

Tie

where v is the velocity of propagation also called wave velocity. For the free space
it is denoted by ¢ and its value is 3x10®% m/s.



Hence we can rewrite equation (5) as,

0*E, _ ,0%E,
2 0z ... (6)

D

Above equation is the wave equation and it is differential equation of second
order. Solving this equation mathematically, the solution is given by

Ex, = E}, cos(ot-Pz)+Eq cos(ot+Pz)V /m = 0.

Above equation (7) is a sinusoidal function consisting two components of an
electric field ; one in forward direction and other in backward direction. The wave
consists one component of the field travelling in positive z direction having amplitude
E}, ; while other component having amplitude E5, travelling in negative z direction.

We can rewrite equation (7) as follows,

Ex = Eg cosw(t-%z)+£,’,. cosm(t+gz)v / m . (8)
Two partial differentiations of equation (8) with respect to z and t yields a similar
equation given by

02E; _ B2 (92E,
at?

- (9)

az? ®?

It is clear that equations (6) and (9) are similar equations. So comparing these two
equations we can get another expression for velocity as,

v = g m/s .. (10)

We can obtain similar type of equations for magnetic field H by considering
equation (2) and putting value of E, from equation (8),

aHY s 1 ¢ + B - B
at -HBE[E“‘COSW(' 51)+Emcosm(t+62)]
Hy

at

g -':I [ﬁE.’,. simo(t-B )-BE;, sinw(n%z)]

——s —Z
(O]

Integrating both sides with respect to time, we get,
- b g b g f B 2 B
Hy = P E; cosof t o o Eq cos t+=2

H, = H} cos(ot-Bz)-Hj cos(wt+pz)A / m . (11)




This equation is similar to equation (7) representing two components of a magnetic
field one in forward direction while other in backward direction.

From equations (7) and (11) it is clear that when we assume x component for E, it
results in y component for H. Both Eand H are in time phase and both are
perpendicular to each other. Both these fields lie in a plane which is perpendicular to
the direction of wave propagation. Thus E and H together form transverse
electromagnetic (TEM) wave ; with one forward travelling wave in the positive

z-direction with velocity % and another backward travelling wave in negative

z-direction with the same velocity. Thus E and H are only the functions of direction of
travel and time.

In general, when any wave propagates in the medium, it gets attenuated. The
amplitude of the signal reduces. This is represented by an attenuation constant «. It is
measured in neper per meter (Np/m). But practically it is expressed in decibel (dB).
The conversion between a basic unit neper (Np) and decibel (dB) is given by

1 Np = 8686 dB

It is also observed that when a wave propagates, phase change also takes place.
Such a phase change is expressed by a phase constant . It is measured in radian per
meter (rad/m).

So attenuation constant (a) and phase constant (B) together constitutes a
propagation constant of medium for uniform plane wave. It is represent by y. It is
expressed per unit length as

Yy = a+jp - (12)

The ratio of amplitudes of E to H of the waves in either direction is called

intrinsic impedance of the material in which wave is travelling. It is denoted by n and
given by,

Em En op
D —m e — i w— . Q
But as we know, v=2=L,

B Jue

n=JE=JgQ .. (14)




For free space, intrinsic impedance is denoted by ng,

no = %f =120 xQ =377Q .. (15)

and
1

JHOED

In general, wave repeats itself after 2x radians. In otherwords, if A is the length of
one cycle of sinusoidal signal, then signal changes phase by 360° or 2x radians. So we
can write relation between A and } as,

=~ 3x10®* m/s . (16)

<
1

CcC=

)t:ﬁ'%’t m . (17)

Multiplying both sides of equation (17) by frequency f,

0 () = g_[;t_f_—.%’=v

Thus velocity of propagation or wave velocity is given by,

v=FfA m/s . (18)

9.3 Wave Equations in Phasor Form

An electromagnetic wave in a medium can be completely defined if intrinsic
impedance (n) and propagation constant (y) of a medium is known. Thus it is
necessary to derive the expressions for n and y in terms of the properties of a medium
such as permeability (u), permittivity (&), conductivity (o) etc.

Consider Maxwell's equation derived from Faraday's law,

e &B H
v B e B - — ove
xE =7 =K (1)

> éH
- F;) ey
VxVXE = “H[a(v"ﬂ)] o (2)



Using vector identity to the left of equation (2),
- - ) i
v(v «E)-V2E = -p [ﬁ (Vx H)]

But according to another Maxwell's equation,

VXﬁ = j+a_lt2

Putting value of V x H in equation (3),
= F o (z.8D
V(VeE)-V2E = —n|— _—
(V+E)-v2E [at(1+6t ]]

Since most of the regions are source or charge free,
V.E =0
V(V-E) = 0

Putting value of V(V « E) in equation (4), assuming charge free medium,
= 6(: oD
~V2E = —pl|— ol
E=-u [Bt[l "o )]

Making both sides positive,

. d(z.8D
VZE = p[-a—t(l"'ﬂJ]

e (3)

. (4)

s (9)

Consider a general electromagnetic wave with both the fields, E and H varying
with respect to time. When any field varies with respect to time, its partial derivative
taken with respect to time can be replaced by jo Rewriting equation (5) in phasor

form,
V2E = p[jo(J+joD)]
V2E = jou[(cE)+jo(cE)]
V2E = [joopE+(jo)enE]
V2E = [jop(o +joe)]E

. (6)



In similar way, we can write another phasor equation as,
V2H = [jou(o +jwe)]H A7)

The terms inside the bracket in equations (6) and (7) are exactly similar and
represent the properties of the medium in which wave is propagating. The total
bracket is the square of a propagation constant y, hence we can rewrite equations (6)
and (7) as,

V2E = y2E and
VZH = y2H

So the propagation constant y can be expressed in terms of properties of the

medium as,
Yy = a+jpf= Jimu(o +jwe) ... (8)

The real and imaginary parts of y are attenuation constant (a) and phase constant
(B) and both can be expressed in terms of the properties of the medium,

T oY _
a = (oJ—z-[ 1+(E) l] ... (9)
2
[ 1+(-‘.’..) +1] .. (10)
e

The intrinsic impedance of a medium can be expressed interms of the properties of
a medium and is given by,

and p

|}
. B
|5

.
n =i - (1)
It can also be expressed in polar form as |n| £0 where
/e
In| = - and

2
14{—0 )
we
o
tan 20 = — 0°<0<45°
WE

Let us summarize the equations which are helpful in describing the
electromagnetic waves (uniform plane waves). Table 9.1 lists equations describing the
propagation of EM waves in a medium.



9.4 Uniform Plane Wave in Perfect Dielectric

If a medium, through which the uniform plane wave is propagating, is perfect
dielectric (which is also called lossless dielectric), then the conductivity is zero i.e.
o =0. Let the permittivity permeability of the medium be £=g9e, and p=pou,
respectively.

The propagation constant y is given by,

Y = Jjon(0+joe) = tjofue
Y = a+jB=tjofue e (1)

From equation (1) it is clear that, propagation constant is purely imaginary. It
indicates in a perfect dielectric medium, attenuation constant a is zero. Let us select
value of B which gives propagation of wave in positive z-direction.

L a=0, B = wfue :2)
Similarly an intrinsic impedance for a perfect dielectric medium is given by,

- f___im' - JB
. o 0+jwe J:Q rx{3)

Thus intrinsic impedance n is real resistive. That means phase angle of intrinsic
impedance is zero. But the phase angle of intrinsic impedance is zero means phase
difference between E and H is zero. In other words, for a perfect dielectric, both the

fields E and H, are in phase.

As in perfect dielectric, o =0, attenuation constant (o) is also zero. As wave
propagates, only the phase (B) changes. Thus no attenuation i.e. @ =0 means no loss.

Key Point: So perfect diectric medium is also called lossless dielectric.
The velocity of propagation in the perfect dielectric is given by,

- )

Joe B

If A is the wavelength of one cycle of the propagating wave then velocity is given
by

v = Af m/s ... (5)



9.5 Uniform Plane Wave in Lossy Dielectric

Practically all the dielectric materials exhibit some conductivity. So we can not
directly neglect o assuming it zero. Obviously as compared to the results obtained for
perfect dielectric medium, the results for lossy dielectric will be different.

The propagation constant y in lossy dielectric is given by

Yy = % ,Kc +jwe) jop oes: 1)
Rearranging the terms
Y = J)coe [l S )’mp
joe
r=a+jp = jofue f1-j e (2)

From equation (2), it is clear that the propagation constant for lossy dielectric
medium is different than that for lossless dielectric medium, due to the presence of
radical factor. When o becomes zero as in case with perfect dielectric, the radical
factor becomes unity and we can obtain the propagation constant y for perfect
dielectric. It is also clear from equation (2) that the attenuation constant a is not zero.
By substituting the values of w,o,u and ¢, the attenuation constant (o) and phase
constant B may be calculated. The presence of a indicates certain loss of signal in the
medium, hence such medium is called lossy dielectric.

When a wave propagates in a lossy dielectric, amplitude of the signal decays
exponentially due to the factor e-®# For forward as well as backward waves, the
amplitude decays exponentially.

As o is not zero, the intrinsic impedance becomes a complex quantity. It is given

by,
- { JoR_
LR s In|] £64 Q O )

Being a complex quantity, n is represented in polar form as shown in above
equation. This angle 0,, indicates phase difference between the electric and magnetic
fields. Thus in lossy dielectric, the electric and magnetic fields are not in time phase.

The intrinsic impedance can be expressed as

i & jor  _ jou
o+joe | ( o )
joe

| +—
Jwe



o ... (4)

The angle 0, is given by

0, = %[lz‘_m-l(%]] rad .. 3)

This angle depends on the properties of the lossy dielectric medium as well as the
frequency of a signal. For low frequency signal, ©® becomes very small. Then

Oh = %‘ rad

For very high frequency signals,
0, = 0

Thus the range of 8, for complete frequency range, from 0 to very high frequency

” n
is 0<B, < g

9.5.1 Uniform Plane Wave in Practical Dielectric

As we have already studied, for perfect dielectric conductivity is zero (o =0). But
for practical dielectric, conductivity is not zero ; but it is very small. The condition for
practical dielectric is that the loss in the signal is very small i.e. o<<jwe.

The propagation constant is given by

Y = ,[iwu(a +jwe)
Y = J(jmp)(jwe)(l+ig;)
Yy = jw\/ﬁ 1+-i-(%-£

Consider radical term. Mathematically using binomial theorem,

n(n-1) o +n(n-l)(n--2) .-
2! 3! o

1+x)" = 1+nx+
where |[x| < 1.

In our case [x| <1land n= %, then neglecting higher order terms, we can write,



(o) = s
1+_—- = 1+— —
joE 2| jmwe

Substituting above value for the radical term,
W o

Yy = )o),/i:g [l+j2ms]

Yy = a+jp= %J’g+jmJ;Ts

Comparing the real terms, the attenuation constant is given by

T |
u—zJ: Np/m

Similarly comparing the imaginary terms, the phase constant is given by
B = meT; rad/m e (3)

w (1)

.2

In general, the intrinsic impedance 7 is given by,
o . jou
VU"'](DB im(l-’-;)

jwe

=
]
o=
Q

-—
-
i’

- ]

Using binomial theorem,

(1+x7" = 1= +n(r;!-1) xz_n(n-;)!(n-Z) x3 ...

% is very small as compared to 1, so neglecting higher order terms,

(1+x)™" = 1-nx



Using above result, the intrinsic impedance can be written as,

o 1 L E.
L z[‘ 2(}«»8)]
n= E(lﬁ%) Q . (4)

For practical dielectric material, the conductivity is very small. This indicates that
the loss in the signal is very small. Let us obtain the condition which indicates
whether the loss is small or not. Consider Maxwell's equation,

— . &b _ 6(&:?)
VxH = Ic*"ﬁ' = aE+T

We know that when the fields are time varying the partial derivative with respect

to time can be replaced by jo.
VxH
or VxH

cE+joeE = (o +joe) E

Je+Jo

Thus the ratio of the conduction current density to the displacement' current
density is given by

S|
I
Q

C
D jwe

St |

These two current density vectors
point in same direction in space as
shown in the Fig. 9.1. From the
expression of ratio of two current
densities, it is clear that displacement
current density leads conduction
current density by 90°.

The angle ©® by which the
displacement current density leads the
total current density is given by

0 = tan-!
we
o Fig. 9.1 Phasor representation of
or | tan© B Je, Jp and E




When o>>w¢, the loss tangent is very high, thus a medium is said to be good
conductor. When o<<wg, the loss tangent is also small, thus a medium is said to be
good dielectric. Hence any medium behaves as a good conductor at low frequencies
while exhibits the properties of lossy dielectric at very high frequencies.

9.6 Uniform Plane Wave in Good Conductor

A practical or good conductor is the material which has very high conductivity. In
general, the conductivity is of the order of 107 U/m in the good conductors like
copper, aluminium etc.

For good conductors,

o
— >>1
WE

The propagation constant y is given by,

y = Jjon(o +joe) . (1)

As 6 >>we, we can neglect imaginary part (jwe),

Y = Jjopo
v = Jous \j
But j = 1£90°
v = Jouo J1.290°
Yy = Jopo Z£45°
¥ = Jouc [cos45°+jsin 45°]
v = fon |35+
1 = J@Rua |45 1+i1)
Yy = a+jp=nfpo +j xfpo e (2)

Thus for good conductor,
o = fafpc Np/m and

B= \fnfpo rad/m




For good conductor, o and P are equal and both are directly proportional to the
square root of frequency (f) and conductivity (o).

The intrinsic impedance of a good conductor is given by

j&
pom 2 .. (3)

O +jwE

But for good conductor, o >>jwe,

=‘P.(2£=.a£'
n (o] O‘ﬁ

But .fj = [1.290° = 1 £45°= cos 45°+jsin 45°

- (b

Substituting value of .fj ,
op |1 .1
= Jo— | —=ti—
c [ 2 ’Ji]
= .‘9}.}. i
n ‘IZC 1+j1)
2nfp 3
n 55~ U+il)
_ [nfn .
TRy (1+j1) .. (4

The angle of intrinsic impedance is 45°. As we have already studied that for
perfect dielectric i.e. zero conductivity, the intrinsic impedance angle is zero and for
the good conductor angle is 45°. Moreover the intrinsic impedance has only a positive
angle. This clearly indicates that the field H may lag the field E by at the most 45°

Consider only the component of the electric field E, travelling in positive
z-direction. When it travels in good conductor, the conductivity is very high and
attenuation constant a is also high. Thus we can write such a component in phasor
form as

Ey = Ei e-9ze-ibz . (5)



When such a wave propagates in good conductor, there is a large attenuation of
the amplitude as shown in the Fig. 9.2.

E\ ------ /,‘\/ 'ETTT-\T:/\' ........ z
2=0 \/ E \Z---'\j'"'\l ......

-~ b

.z=d '

Fig. 9.2 Effect of attenuation constant (o) on amplitude of E,

At z = 0, amplitude of the component E, is E, ; while at z = d, amplitude is
Exn e %4, In distance z = d, the amplitude gets reduced by the factor e-24. If we
1

select d = = then the factor becomes e-! = 0.368. So over a distance d = -3-: the

amplitude of the wave decreases to approximately 37% of its original value. The
distance through which the amplitude of the travelling wave decreases to 37% of the
original amplitude is called skin depth or depth of penetration. It is denoted by .

. (6)

From the expression of the skin depth, it is clear that 3 is inversely proportional to
the square root of frequency. So for the frequencies in the microwave range, the skin
depth or depth of penetration is very small for good conductors. And all the fields
and currents may be considered as confined to a very thin layer near the surface of
the conductor. This thin layer is nothing but the skin of the conductor, hence this
effect is called skin effect. The exponential decay in the amplitude of E or H field
component entering in a good conductor is as shown in the Fig. 9.3.



(0.37) Ep,

Fig. 9.3 Exponential decay in the amplitude of field component
of E with the distance along +z direction

From above plot, it is clear that in 15 distance, amplitude reduces to 37% of its
original value. For a good conductor, amplitude reduces to almost zero within 25 or33
distance. Thus uniform plane wave can not travel large distance through good
conductor. This concept is used in a shielding of a conductor. In a co-axial cable, the
inner conductor carries the signal while the outer is shield which is made up of a
material having properties of good conductor. So even if there is an external
interference, its amplitude reduces to zero within a very short distance due to the
outer conductor. Hence the signal carried by inner conductor is not interfered by an
external interference.



Outer conductor
Exlairial (Shield)
interferance

Fig. 9.4 Shielding of a co-axial cable

The intrinsic impedance of a good conductor interms of skin depth & is given by,

oo ‘oo

n = [ : +il)=£ 245° Q e (7)

The velocity of propagation is given by,

_e._ o __Yi(e) JE(E)’
B~ Jafnc  V2yfuc  Jono

v = 2—0 = wd m/s .. (8)
Jpo

Similarly the wavelength A is given by,

A= EBEB 2nd m e (9)

Equations (8) and (9) gives the velocity of propagation and wavelength expressed
interms of skin depth & (as B:%) :

8.9 Poynting Vector and Poynting Theorem

By the means of electromagnetic (EM) waves, an energy can be transported from
transmitter to receiver. The energy stored in an electric field and magnetic field is
transmitted at a certain rate of energy flow which can be calculated with the help of
Poynting theorem. As we know E and H are basic fields. E is electric field expressed
in V/m; while H is magnetic field measured in A/m. So if we take product of two



fields, dimensionally we get a unit V.A/m? or watt/m?2. So this product of E and H
gives a new quantity which is expressed as watt per unit area. Thus this quantity is

called power density.

As E and H both are vectors, to get power density we may carry out either dot
product or cross product. The result of a dot product is always a scalar quantity. But
as power flows in certain direction, it is a vector quantity. To illustrate this, consider
that the field is transmitted in the form of an electromagnetic waves from an antenna.
Both the fields are sinusoidal in nature. The power radiated from antenna has a
particular directon. Hence to calculate a power density, we must carry out a cross

product of E and H. The power density is given by

Suppose

and

P

ExH

!

]

=l

Power out

Power in

Fig. 8.4 Power balance representation in
electromagnetic fields

E( ix
Hy ay, then

ExH

(1)

where P is called Poynting
Vector, named after an English
Physicist John N. Poynting. P is the
instantaneous power density vector
associated with the electromagnetic
(EM) field at a given point. The
direction of P indicates instantaneous
power flow at the point. To get a net
power flowing out of any surface, P
is integrated over same closed
surface.

The Poynting theorem is based
on law of conservation of energy in
electromangetism. Poynting theorem
can be stated as follows :

The net power flowing out of a
given volume v is equal to the time
rate of decrease in the energy stored
within volume v minus the ohmic
power dissipated. This can be well
illustrated by the Fig. 8.4.

(Exd)x(Hy 3y )=EH, &, =P, 3,



The above equation indicates that E, H and P are mutually perpendicular to each
other.

Consider that the electric field propagates in free space given by
In the medium, the ratio of magnitudes of E and H depends on its intrinsic
impedance n. For free space,
n= "o =Em =120 = 377Q
Hp
Moreover, in the free space, electromagnetic wave travels at a speed of light.
Thus we can write,

H

[Em cos (wt-Bz)]a,

B -
[71;- cos (wt - Bz)] ay

According to Poynting theorem

P = ExH
= [(E.,. cos (ot - Pz)) a, ]x[—'i—’:- cos (wt—pz)iy]
= E2 =
P = —® cos? (ot -Pz) a, W/ m?
Mo

This is nothing but the power density measured in watt/m2. Thus the power
passing particular area is given by,

Power = Power density x Area

8.9.1 Average Power Density (P,,)

To find average power density, let us integrate power density in z-direction over
one cycle and divide by the period T of one cycle.

T g2
Py = %[ ET'"cos(mt-Bz)dt

0

2 T -
_ E2, I 1+ cos 2(wt Iiz)dt
Tn > 2



_ E[t sin2(ot- m)]‘

™27 200 |,

- E,zn-t sin 2 (ot - Bz)]T

T"‘ LE 0

_ E&f £ sin (20t - 2fz) E
T Ty 2 4w o
_. EZ I sin (20T - 28z)  sin (-2p2)
© Tn|2 4w 4w
But oT =2r,
_ E2 [T sin(4n-2pz) sin2Bz
Pavg = T:; -7.,- + i +
_ EL[T_sin Pz  sin2Pz | _ E%
™2 4o do | 2q
Hence the average power is given by
P.wg = %E;'“ W / m?

8.10 Integral and Point Forms of Poynting Theorem

Consider Maxwell's equations as given below :

- é¢B_ oH

vxE = -—r=-ute (1)
e 7420 o8 2E

VxH = l#ﬁ cE+ E e (2)

Dotting both the sides of equation (3) with E, we get,

E-(VxH) = E-(<:E)+E-(e'z—f) e

Let us make use of a vector identity as given below,

Ve(AxB) = B+(VxA)-A+(VxB)



Applying above vector identity to equation (4) with A = Eand B = H,
H+(VxE)-V+(ExH) = E* (cE)+E'[ a—ﬁ)
-ﬁ'(VX_E.)-V'(EX.ﬁ) - 0E2+§’(8%—$) . (4)

Consider first term on left of equation (5). Putting value of V x E from equation (1)
we can write,

H+(VxE) = H-( aj] -pﬁ-aj e (i)
Now consider term,
o -
-(%H’ = 2'1—1-66?
%ba_t(Hz) i 'ﬁ.g .. (i)
Similarly we can write,
-12-6% E?) = E‘;'_f . (i)

Using results obtained in equations (i), (ii) and (iii) in equation (4),

--a—t.(Hz) -V (Ex H) = aEZ+__(E )
-V-(l-'ixﬁ) 052+——[sz+eEZ]

But E x H is nothing but Poynting vector; P, rewriting equation,

= 10
=VeP = 0E2+-2-‘é—t-[].lH2 +8£2] ...(S)

Equation (5) represents Poynting theorem in point form. If we integrate this
power over a volume, we get energy distribution as,

-I VePdv = IcE’dv+-—-I [pH2+eE2]dv



Applying divergence theorem to left of above equation, we get,

g c 1
-i P+dS = { o E*dv +5—t-v -Z-[pH2+sEz]dv ...(6)

Equation (6) represents Poynting theorem in integral form. The negative sign on
the left of equation (6) indicates that the power is flowing into the surface. The first
term on the right gives the total ohmic power loss within the volume, while the
second term represents time rate of increase of total energy stored in the electric and
magnetic fields. By the law of conservation of energy, the sum of the two terms on
right must be equal to the total power flowing into the volume. Thus the minus sign
indicates the power flowing into the volume. So the total power flowing out of the
volume is given by f P+dS. This can be represented with the help of equation as

s

given below,

- 3¢ 1
i P+dS = -{cEzdv-a—t-v i[pH2+cEz]dv e (7)

When we define Poynting vector, both the fields E and H are assumed to be in the
real form. If E and H are expressed in phasor form, then the average power is given
by,

Fug = 3Re[ExH']=2Re[E" xH] (8)

where H" is the complex conjugate of H and E" is the complex conjugate of E.
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