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Magnetic Scalar and Vector Potentials: 

 

In studying electric field problems, we introduced the concept of electric potential that simplified the 

computation of electric fields for certain types of problems. In the same manner let us relate the 

magnetic field intensity to a scalar magnetic potential and write: 

 
...................................(4.21) 

 

From Ampere's law , we know that 

 

 
......................................(4.22) 

 

Therefore, ................................................................................................................................ (4.23) 

 
But using vector identity, we find that is  valid only where . Thus 

the scalar magnetic potential is defined only in the region where . Moreover, Vm in general is 
not a single valued function  of position. 

 
 

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown 

in fig 4.8. 

 
In the region , and 



 

 

 

 

 

 

 

Fig. 4.8: Cross Section of a Coaxial Line 

 

If Vm is the magnetic potential then, 

 

 

 

 
If we set Vm = 0 at then c=0 and 

 

We observe that as we make a complete lap around the current carrying conductor , we reach  

again but Vm this time becomes 

 

 

We observe that value of Vm keeps changing as we complete additional laps to pass through the same 

point. We introduced Vm analogous to electostatic potential V. But for static electric 

fields,  and   ,      whereas      for       steady       magnetic 

field wherever  but even if along the path of integration. 

We now introduce the vector magnetic potential which can be used in regions where current 

density may be zero or nonzero and the same can be easily extended to time varying cases. The use 

of vector magnetic potential provides elegant ways of solving EM field problems. 

 
 

Since and we have the  vector identity  that  for any vector      , , we can 

write   . 

 

Here, the vector field is called the vector magnetic potential. Its SI unit is Wb/m. Thus if can 

find of a given current distribution, can  be found from through a curl operation. 

 

We have introduced the vector function   and related its curl to    . A vector function is defined 

fully in terms of its curl as well as divergence. The choice of is made as follows. 



 

 

 

 

 

...........................................(4.24) 

 

By using vector identity, .......................................................................................... (4.25) 

 
.........................................(4.26) 

 
Great deal of simplification can be achieved if we choose . 

Putting , we get which is vector poisson equation. 

In Cartesian coordinates, the above equation can be written in terms of the components as 

 
......................................(4.27a) 

 
......................................(4.27b) 

 
......................................(4.27c) 

 

The form of all the above equation is same as that of 

 

 
..........................................(4.28) 

 

for which the solution is 

 

 
..................(4.29) 

 

 
In case of time varying fields we shall see that , which is known as Lorentz 

condition, V being the electric potential. Here we are dealing with static magnetic field, so . 

By comparison, we can write the solution for Ax as 

 

 
...................................(4.30) 

 

Computing similar solutions for other two components of the vector potential, the vector potential 

can be written as 

 

 

.......................................(4.31) 



 

 

 

 

 

This equation enables us to find the vector potential at a given point because of a volume current 

density . Similarly for line or surface current density we can write 

 

 

 

 
. ..............................(4.33) 

 
The magnetic flux through a given area S is given by 

 

 
 

Substituting 

.............................................(4.34) 
 

 

 

 

.........................................(4.35) 
 

Vector potential thus have the physical significance that its integral around any closed path is equal 

to the magnetic flux passing through that path. 

 

Inductance and Inductor: 

 

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We 

have already discussed about the parameters resistance and capacitance in the earlier chapters. In this 

section, we discuss about the parameter inductance. Before we start our discussion, let us first 

introduce the concept of flux linkage. If in a coil with N closely wound turns around where a current 

I produces a flux and this flux links or encircles each of the N turns, the flux linkage is defined 

as . In a linear medium, where the flux is proportional to the current, we define the self 

inductance L as the ratio of the total flux linkage to the current which they link. 

 

 

 
i.e., ................................................................. (4.47) 

 

To further illustrate the concept of inductance, let us consider two closed loops C1 and C2 as shown 

in the figure 4.10, S1 and S2 are respectively the areas of C1 and C2 . 



 

 

 

 

 
 

 
 

Fig 4.10 

 

if a current I1 flows in C1 , the magnetic flux B1 will be created part of which will be linked to C2 as 

shown in Figure 4.10. 

 
 

...................................(4.48) 

 
In a linear medium, is proportional to I 1. Therefore, we can write 

 
...................................(4.49) 

 

where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then 

 
...................................(4.50) 

 
and 

 

 
or .......................................................... (4.51) 

 

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to 

the current flowing in the first circuit. 

 

As we have already stated, the magnetic flux produced in C1 gets linked to itself and 

if C1 has N1 turns then , where is the flux linkage per turn. 

Therefore, self inductance 

 

 
= ...................................(4.52) 

 

As some of the flux produced by I1 links only to C1 & not C2. 



 

 

 

 

 

...................................(4.53) 
 

 

 

Further in general, in a linear medium, and 
 

Example 1: Inductance per unit length of a very long solenoid: 

 

Let us consider a solenoid having n turns/unit length and carrying a current I. The solenoid is air 

cored. 
 

 

 

Fig 4.11: A long current carrying solenoid 

 

The magnetic flux density inside such a long solenoid can be calculated as 

 
 

..................................(4.54) 

 

where the magnetic field is along the axis of the solenoid. 

If S is the area of cross section of the solenoid then 

..................................(4.55) 

 

The flux linkage per unit length of the solenoid 

 
..................................(4.56) 

 

The inductance per unit length of the solenoid 

 

 
..................................(4.57) 

 

Example 2: Self inductance per unit length of a coaxial cable of inner radius 'a' and outer radius 'b'. 

Assume a current I flows through the inner conductor. 

 

Solution: 

 

Let us assume that the current is uniformly distributed in the inner conductor so that inside the inner 

conductor. 



 

 

 

 

 

i.e., 

 

 

 

 

 

 
 

and in the region , 

 

 

 

 

 

 

 
..................................(4.58) 

 

 

 

..................................(4.59) 
 

Let us consider the flux linkage per unit length in the inner conductor. Flux enclosed between the 

region and ( and unit length in the axial direction). 

 
 

..................................(4.60) 

 

 
Fraction of the total current it links is 

 

 

 
..................................(4.61) 

 
Similarly for the region 

 

 
..................................(4.62) 

 

 
& .................................(4.63) 

 
Total linkage 

 

 

..................................(4.64) 



 

 

 

 

 

 

 

 

The self inductance,...................................................................................... (4.65) 

 

 
Here, the first term arises from the flux linkage internal to the solid inner conductor and is the 

internal inductance per unit length. 

 

In high frequency application and assuming the conductivity to be very high, the current in the 

internal conductor instead of being distributed throughout remain essentially concentrated on the 

surface of the inner conductor ( as we shall see later) and the internal inductance becomes negligibly 

small. 

 

 
 

Example 3: Inductance of an N turn toroid carrying a filamentary current I. 
 

 

 

Fig 4.12: N turn toroid carrying filamentary current I. 

Solution: Magnetic flux density inside the toroid is given by 

 
..................................(4.66) 

 

Let the inner radius is 'a' and outer radius is 'b'. Let the cross section area 'S' is small compared to the 

 

mean radius of the toroid 

Then total flux 

 

 
..................................(4.67) 

 

and flux linkage 



 

 

 

 

 

 
 

..................................(4.68) 
 

The inductance 

 

 

..................................(4.69) 
 

 

 

Energy stored in Magnetic Field: 

 

So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that 

work is required to be expended to assemble a group of charges and this work is stated as electric 

energy. In the same manner energy needs to be expended in sending currents through coils and it is 

stored as magnetic energy. Let us consider a scenario where we consider a coil in which the current 

is increased from 0 to a value I. As mentioned earlier, the self inductance of a coil in general can be 

written as 
 

 

 
 

or .........................................................(4.70b) 

 

If we consider a time varying scenario, 

 

 
..................................(4.71) 

 

 
We will later see that is an induced voltage. 

..................................(4.70a) 

 

 

is the voltage drop that appears across the coil and thus voltage opposes the change of 

current. 
 

Therefore in order to maintain the increase of current, the electric source must do an work against 

this induced voltage. 

 

 

 

 
. .................................(4.72) 



 

 

 

 

 

 

& (Joule). ................................ (4.73) 

 

which is the energy stored in the magnetic circuit. 

We can also express the energy stored in the coil in term of field quantities. 

For linear magnetic circuit 

 

 
...................................(4.74) 

 

Now,                ...................................(4.75) 

where A is the area of cross section of the coil. If l is the length of the coil 

 

 

 
...................................(4.76) 

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit volume 

is given by 

 

 
...................................(4.77) 

 

 
 

In vector form 

 

  J/mt3 ....................................................... (4.78) 

is the energy density in the magnetic field. 



 

 

 

 

 

 

 
 

Faraday's Law of electromagnetic Induction 

 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop 

when the magnetic flux linking the loop changed. In terms of fields, we can say that a time varying 

magnetic field produces an electromotive force (emf) which causes a current in a closed circuit. The 

quantitative relation between the induced emf (the voltage that arises from conductors moving in a 

magnetic field or from changing magnetic fields) and the rate of change of flux linkage developed 

based on experimental observation is known as Faraday's law. Mathematically, the induced emf can 

be written as 

 

 
Emf =  Volts (5.3) 

where is the flux linkage over the closed path. 

 

 
 

A non zero may result due to any of the following: 

 

(a) time changing flux linkage a stationary closed path. 

 

(b) relative motion between a steady flux a closed path. 

 

(c) a combination of the above two cases. 

 

The negative sign in equation (5.3) was introduced by Lenz in order to comply with the polarity of 

the induced emf. The negative sign implies that the induced emf will cause a current flow in the 

closed loop in such a direction so as to oppose the change in the linking magnetic flux which 

produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming a 

loop does not necessarily have to be conductive). 

 

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux 

linking the coil induces an emf in each turn of the coil and total emf is the sum of the induced emfs 

of the individual turns, i.e., 



 

 

 

 

 

 

Emf = Volts (5.4) 

 

 
 

By defining the total flux linkage as 

 
(5.5) 

 

The emf can be written as 

 

 
Emf = (5.6) 

 

Continuing with equation (5.3), over a closed contour 'C' we can write 

 

Emf =                           (5.7) 

where is the induced electric field on the conductor to sustain the current. 

 

Further, total flux enclosed by the contour 'C ' is given by 

 

 
(5.8) 

 

Where S is the surface for which 'C' is the contour. 

 

From (5.7) and using (5.8) in (5.3) we can write 

 

 
(5.9) 

 

By applying stokes theorem 

 

 
(5.10) 

 

Therefore, we can write 

 

 
(5.11) 

 

which is the Faraday's law in the point form 



 

 

 

 

 

 

We have said that non zero can be produced in a several ways. One particular case is when a 

time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary 

closed path by a time varying magnetic field is called a transformer emf . 

 

Example: Ideal transformer 

 

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled magnetically 

through a common core. Let us consider an ideal transformer whose winding has zero resistance, the 

core having infinite permittivity and magnetic losses are zero. 
 

 
 

 
Fig 5.1: Transformer with secondary open 

 

These assumptions ensure that the magnetization current under no load condition is vanishingly 

small and can be ignored. Further, all time varying flux produced by the primary winding will follow 

the magnetic path inside the core and link to the secondary coil without any leakage. If N1 and N2 are 

the number of turns in the primary and the secondary windings respectively, the induced emfs are 

 

 
(5.12a) 

 

 
(5.12b) 

 

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end 

of the winding.) 

 

 
(5.13) 



 

 

 

 

 

i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under 

ideal condition, the induced emf in either winding is equal to their voltage rating. 

 

 
(5.14) 

 

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the current 

flows in the secondary, which produces a flux opposing the original flux. The net flux in the core 

decreases and induced emf will tend to decrease from the no load value. This causes the primary 

current to increase to nullify the decrease in the flux and induced emf. The current continues to 

increase till the flux in the core and the induced emfs are restored to the no load values. Thus the 

source supplies power to the primary winding and the secondary winding delivers the power to the 

load. Equating the powers 

 
(5.15) 

 

 
(5.16) 

 

Further, 

 
(5.17) 

 

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal 

condition. 

 

Motional EMF: 

 

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2. 
 
 

 
Fig 5.2 

 
If a charge Q moves in a magnetic field , it experiences a force 

 
(5.18) 



 

 

 

 

 

This force will cause the electrons in the conductor to drift towards one end and leave the other end 

positively charged, thus creating a field and charge separation continuous until electric and magnetic 

forces balance and an equilibrium is reached very quickly, the net force on the moving conductor is 

zero. 

 

can be interpreted as an induced electric field which is called the motional electric field 

(5.19) 

 

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit 

is  . This emf is called the motional emf. 

A classic example of motional emf is given in Additonal Solved Example No.1 . 

 

Maxwell's Equation 

 

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For time 

varying case, the relationship among the field vectors written as 

 

 
(5.20a) 

 
(5.20b) 

 
(5.20c) 

 
(5.20d) 

 

In addition, from the principle of conservation of charges we get the equation of continuity 
 

 

(5.21) 

The equation 5.20 (a) - (d) must be consistent with equation (5.21). 

 

We observe that 

 
(5.22) 

 
Since is zero for any vector . 

 
Thus applies only for the static case i.e., for the scenario when . 

A classic example for this is given below . 



 

 

 

 

 
 

Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 

 

 

 

 

 

 

 

Fig 5.3 

 

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the total current 

passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes 

through this surface and hence Ienc = 0. But for non steady currents such as this one, the concept of 

current enclosed by a loop is ill-defined since it depends on what surface you use. In fact Ampere's 

Law should also hold true for time varying case as well, then comes the idea of displacement current 

which will be introduced in the next few slides. 

 

We can write for time varying case, 

 

  (5.23) 

 
(5.24) 

 

The equation (5.24) is valid for static as well as for time varying case. 

 

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field even in 

 

the absence of     .  The term       has a dimension of  current densities and is called the 

displacement current density. 

 

 
Introduction of         in equation is one of the major contributions of Jame's Clerk Maxwell. 

The modified set of equations 

 

 
(5.25a) 



 

 

 

 

 

 

 

(5.25b) 

 
(5.25c) 

 
(5.25d) 

 

is known as the Maxwell's equation and this set of equations apply in the time varying scenario, 

 

static fields are being a particular case . 

 

In the integral form 

 

 
(5.26a) 

 

                 (5.26b) 

  (5.26c) 

                                    (5.26d) 

The modification of Ampere's law by Maxwell has led to the development of a unified 

electromagnetic field theory. By introducing the displacement current term, Maxwell could predict 

the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz 

experimentally which led to the new era of radio communication. 
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