IMPACT OF JETS

A jet of water issuing from a nozzle has a velocity and hence it
possesses a kinetic energy. If this jet strikes a plate then it is
said to have an impact on the plate. The jet will exert a force on
the plate which it strikes. This force is called a dynamic force
exerted by the jet. This force is due to the change in the
momentum of the jet as a consequence of the impact. This force
is equal to the rate of change of momentum i.e., the force is
equal to (mass striking the plate per second) x (change in
velocity).

We will consider some particular cases of impact of a jet on a plate
or vane.
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Fig, 18.1. Fig. 18.2.

Direct Impact of a Jet on a Stationary Flat Plate:
Consider a jet of water impinging normally on a flat plate at rest.

Let, a = Cross-sectional area of the jet in
metre?.:

V = Velocity of the jet in metres per second.

M = Mass of water striking the plate per second.
-~ M = paV kg/sec where p = density of

water in kg/cum Force exerted by the

jet on the plate- P = Change of

momentum per second = (Mass

striking the plate per second) x

(Change in velocity)



=M (V-0)=MV =paV.V..
P = paV2 Newton

Direct Impact of a Jet on a Moving Plate:
Let,
V = Velocity of the jet v
= Velocity of the plate.
Velocity of the jet relative to the plate = (V - v)
We may consider as though the plate is at rest and that the jet
is moving with a velocity (V -v) relative to the plate. .. Force
exerted by the jet on the plate
=P =pa (V-v)? Newton
In this case, since the point of application of the force moves, work
is done by the jet.
Work done by the jet on the plate per second
= Pv = pa (V - v)?v Nm/s or Joule/sec

Force exerted by a jet of water on a series of vanes

If we see practically, force exerted by a jet of water on a
single moving plate will not be feasible. Therefore, we will see
the practical case where large number of plates will be
mounted on the circumference of a wheel at a fixed distance
apart as displayed here in following figure.

Jet will strike a plate and due to the force exerted by the jet on
plate, wheel will be started to move and therefore second
plate mounted on the circumference of wheel will be
appeared before the jet and jet will again exert the force to
the second plate.
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Therefore, each plate will be appeared successively before the
jet and jet will strike each plate or jet will exert force to each
plate. Therefore, wheel will be rotated with a constant speed.

Let us consider the following terms as mentioned here

V = Velocity of jet d = Diameter of jet

a = Cross-sectional area of jet = (r/4) x d u

= Velocity of vane

Mass of water striking the series of plate per second = paV
Jet strikes the plate with a velocity = V-u

After striking, jet will move tangential to the plate and therefore
velocity component in the direction of motion of plate will be
zero.

Force exerted by the jet in the direction of motion of plate



Fx = Mass striking the series of plate per second x [Initial velocity
— final velocity]

Fx = paV [(V-u)-0] = paV (V-u)

Work done by the jet on the series of plate per second = Force
x Distance per second in the direction of force

Work done by the jet on the series of plate per second = Fx x u
= paV (V-u) x u

Kinetic energy of the jet per second = (1/2) x mV?

Kinetic energy of the jet per second = (1/2) x paV V2

Kinetic energy of the jet per second = (1/2) x paV?

Efficiency = Work done per second / Kinetic energy per second
Efficiency = paV (V-u) x u / (1/2) x paV3

Efficiency = 2 u (V-u)/V?

2u[V - U
n= V2 ]

Maximum efficiency will be 50 % and it will be when u =V/2



WORKDONE Of Jet Impinging On A Moving Curved

Vane:
Consider a jet of water entering and leaving a moving curved vane as
shown in fig.
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Fig-4 : Jet impinging on a moving curved vane
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Let,

V = Velocity of the jet (AC), while entering the vane,

V1 = Velocity of the jet (EG), while leaving the vane,

v1, v2 = Velocity of the vane (AB, FQG)

a = Angle with the direction of motion of the vane, at which the jet
enters the vane,

B = Angle with the direction of motion of the vane, at which the jet
leaves the vane,

Vr = Relative velocity of the jet and the vane (BC) at entrance (it is the
vertical difference between V and v)

Vr1 = Relative velocity of the jet and the vane (EF) at exit (it is the
vertical difference between v1 and v2)



© = Angle, which Vr makes with the direction of motion of the
vane at inlet (known as vane angle at inlet),

B = Angle, which Vr1 makes with the direction of motion of
the vane at outlet (known as vane angle at outlet),

Vw = Horizontal component of V (AD, equal to ). ltis a
component parallel to the direction of motion of the vane (known
as velocity of whirl at inlet),

Vw1 = Horizontal component of V1 (HG, equal to ). It is a
component parallel to the direction of motion of the vane (known
as velocity of whirl at outlet),

Vf = Vertical component of V (DC, equalto). ltis a
component at right angles to the direction of motion of the vane
(known as velocity of flow at inlet),

Vf1 = Vertical component of V1 (EH, equalto). Itis a
component at right angles to the direction of motion of the vane
(known as velocity of flow at outlet),

a = Cross sectional area of the jet. As the jet of water enters
and leaves the vanes tangentially, therefore shape of the vanes
will be such that Vr and Vr1 will be a long with tangents to the
vanes at inlet and outlet.

The relations between the inlet and outlet triangles (until and
unless given) are: (i) V=v1 , and

(i) Vr=Vr1 We know that the force of jet, in the
direction of motion of the vane,



F, = Mass of water flowing per second x Change of velocity of whirl

:}~F MV[V v

g
W
= - [V =V,y] Newton
K
B
Work done per second == [V, =V]v Nnlsec
'
Work done per second per N of water

| |
== [V, =V, v NndseclN of water
§
e, f the direction of velocity of whirl af outlet is apposite o that af inlef then the work done per second per N of water

1
== (V. +V,]v NleclN of waer
!



Unit-5 FLOW THROUGH PIPES

5.1Friction Losses of Head in Pipes 5-2 Secondary Losses of Head in Pipes
5.3 Flow through Pipe Systems

Eriction L osses of Head in Pipes:

There are many types of losses of head for flowing liquids such as friction, inlet
and outlet losses. The major loss is that due to frictional resistance of the pipe,
which depends on the inside roughness of the pipe. The common formula for
calculating the loss of head due to friction is Darcy’s one.

Darcy’s formula for friction loss of head:

For a flowing liquid, water in general, through a pipe, the horizontal forces on
water between two sections (1) and (2) are:

Area A

PLA=P2A+FR

1 Direction
. ) . of Flow
P1= Pressure intensity at (1). %

A = Cross sectional area of pipe. P2=
Pressure intensity at (2).

FR= Frictional Resistance at (2). Friction along Wall

\

-
B EE——

Fluid Flow >
—_—

FR/OA=(P1/0)-(P2/O) = hf

Friction along Wall




Where, hf = Loss of pressure head due to friction.

O = Specific gravity of water.

It is found experimentally that:

2

FR = Factor x Wetted Area x Velocity
2

FR=(Of/2g)x(OdL)xv

Where, f= Friction coefficient.
d = Diameter of pipe.
L = Length of pipe.

hf=(0 /29)x(OdL)xv2=4f*L* V!

O (O d2 /4) d*2g

hf = 4fLv2

2gd

It may be substituted for [v=Q / (0O d2 /4)] in the last equation to get the head

loss for a known discharge. Thus,

hf= 32fLQ2

029d5

12x9.81x1

10



Note: In American practice and references, A = T american = 4 f

Example 1:
A pipe 1 m diameter and 15 km long transmits water of velocity of 1 m/sec.
The friction coefficient of pipe is 0.005.

Calculate the head loss due to friction?

Solution

hf = 4fLv?2

29d
hf= 4x0.005x15000x 12  =15.29 m
The Darcy — Weisbach equation relates the head loss (or pressure loss) due to

friction along a given length of a pipe to the average velocity of the fluid flow
for an incompressible fluid.

The friction coefficient f (or A = 4 f) is not a constant and depends on the
parameters of the pipe and the velocity of the fluid flow, but it is known to high
accuracy within certain flow regimes.

For given conditions, it may be evaluated using various empirical or theoretical
relations, or it may be obtained from published charts.

Re (Reynolds Number) is a dimensionless number. Re=pvd

For pipes, Laminar flow, Re <2000
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Transitional flow, 2000 < Re <4000
Turbulent flow, Re > 4000

For laminar flow,

Poiseuille law, (f = 64/Re) where Re is the Reynolds number .

For turbulent flow,

Methods for finding the friction coefficient f include using a diagram such as the
Moody chart, or solving equations such as the Colebrook—White equation.

Also, a variety of empirical equations valid only for certain flow regimes such
as the Hazen — Williams equation, which is significantly easier to use in
calculations. However, the generality of Darcy — Weisbach equation has made
it the preferred one.

The only difference of (hf) between laminar and turbulent flows is the empirical

value of ().

Introducing the concept of smooth and rough pipes, as shown in Moody chart,

we find:

1) For laminar flow, f=16/R.

2) For transitional flow, pipes' flow lies outside this region.

3) For smooth turbulent (a limiting line of turbulent flow), all values of
relative roughness (ks/d) tend toward this line as R decreases. Blasius
equation: f = 0.079 / R%%



4) For transitional turbulent, it is the region where (f) varies with both (ks/d)
& (Re). Most pipes lie in this region.
5) For rough turbulent, (f) is constant for given (ks/d) and is independent of

(Re).

Doing a large number of experiments for the turbulent region for commercial
pipes, Colebrook-White established the equation:

1 k. 126
— == —4105_’10 _; + T
V' ~f 3 / ld Re -\v' .f '

This equation is easily solved employing Moody chart.
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Relative roughness k/d

Pipe Material K, mm

Brass, Copper, Glass 0.003

Asbestos Cement 0.03
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Iron 0.06
Galvanised Iron 0.15
Plastic 0.03
Bitumen-lined Ductile Iron 0.03
Concrete-lined Ductile Iron 0.03
Example 2:

Water flows in a steel pipe (d = 40 mm, k = 0.045x10° m, = 0.001 k/ms) with

a rate of 1 lit/s.

Determine the friction coefficient and the head loss due to friction per meter
length of the pipe using:

1- Moody chart? 2- Smooth pipe formula?

Solution
v=0Q/A=0.001/(n (0.04)%4) = 0.796 m/s
Re=pvd/ g=(1000x0.796x0.04) / 0.001 = 31840 > 4000

OTurbulent flow.

1. Moody chart:

k/d = 0.045x10/ 0.04 = 0.0011 & Re = 31840
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Ofrom the chart, f=0.0065
hf = 4fLv?  =4x0.0065x1x(0.796)2 = 0.0209 m/ m of pipe
2gd 2x9.81x0.04

2. Smooth pipe (Blasius equation):

f=0.079/ R"% = 0.079/ (31840) = 0.0059

hf = 4FLV2 = 4x0.0059x1x(0.796)2 = 0.02 m / m of pipe

2gd 2x9.81x0.04

Another Solution:

Moody friction factor calculation 1s mobile-device-friendly as of January 29. 2014



Select Calculation: | Click to Calculate l

® Circular Duct: Enter D and Q Kinematic viscosity, v (L2/T): 1.0E6
) Circular Duct: Enter D and V Surface Roughness. ¢ (L): 4.5E5
J Circular Duct: Enter D and Re Duct Diameter, D (L): 0.04
) Non-circular Duct: Enter A. P. and Q Duct Area, A (LY): 0.001256637 1
) Non-circular Duct: Enter A, P, and V Duct Perimeter. P (L): (.12566371
_ Non-circular Duct: Enter A. P. and Re Veloaty. V (L/T): 0.79577472
© 2014 LMNO Engineering. Discharge. Q (]_39’]'); 0.001
Research, and Software, Ltd, Reynolds Number: 31830.989
http:/wvww. LMNOeng. com /D 0.001125
‘ Initial Values | Moody Friction Factor. f: 0.026171935
f= L for Re=2100(laminar flow) Re = L
Re v
f= L for 5000<Re<10° (turbulent flow) and 10~ S<-£.<107 2
2 D
e 574
In +
37D Re 0.9

D = Diameter of a circular duct. If duct 1s non-circular. then D is computed as the hydraulic diameter of a
rectangular duct. where D = 4A /P per our non-circular duct page.
Re = Reynolds Number. The symbol Re 1s not the product (R)(e).

The equations used in this program represent the Moody diagram which 1s the old-fashioned way of finding
f You may enter numbers in any units, so long as you are consistent. (L) means that the vanable has units

of length (e.g. meters). (L*/T) means that the variable has units of cubic length per time (e.g. m 3/s). The

Moody friction factor (f) 1s used 1n the Darcy-Weisbach major loss equation. INote that for laminar flow. f1s
independent of e. However, yvou must still enter an e for the program to run even though e 1s not used to
compute f Equations can be found 1 Discussion and References for Closed Conduit Flow.

A more complicated equation which represents a slightly larger range of Reynolds numbers and e/D's 1s used
in Design of Circular Liguid or Gas Pipes.
© 1999-2014 LMNO Engineering, Research, and Software, Ltd. All rights reserved.

LMNO Engineering. Research. and Software. Ltd.
7860 Angel Ridge Rd. Athens. Ohio 45701 USA Phone and fax: (740) 592-1890

ILVMINO@IMNOenc.com http://www LMNOeng com

August 25 2015: Made text fields show 8 significant figures rather than 16. Calculation still uses double
precision internally_
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Example 3: -
The pipe of a syphon has 75 mm diameter and discharges (/ 3
1

water to the atmosphere, as shown in figure.
Neglect all possible losses. i gy
a. Determine the velocity of flow?
b. Find the discharge?
c. What is the absolute pressure at the point 2?

)
g

Solution

(@) Applying Bernoulli’s equation between (1) and (3),2+0+0=0+0+
(V*3/29)

V3 =6.26 m/s

(b) Q=vsXA=6.26x (n (0.075)%/4) = 0.028 m/s

(c)  Applying Bernoulli’s equation between (1) and (2),
2+0+0=23.4+Pypg+ (6.26%/29)

P, = -3.397 x (1000 x 9.81) = - 33327.8 N/m? = - 33.33 kPa
Paans = 64.77 kPa where, (Pam = 98.1 kN/m?)

Secondary L osses of Head in Pipes:

Any change in a pipe (in direction, in diameter, having a valve or other fitting)
will cause a loss of energy due to the disturbance in the flow.



hs = K (V2 / 2g)

The velocity v is the velocity at the entry to the fitting. When the velocity
changes upstream and downstream the section, the larger velocity is generally
used.

Obstruction K
Tank Exit 0.5
Tank Entry 1.0
Smooth Bend 0.3
90° Elbow 0.9
45° Elbow 0.4
Standard T 1.8
Strainer 2.0
Angle Valve, wide open 5.0

Gate Valve: 0.2
Wide Open
3/4 open 1.2
1/2 open 5.6
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1/4 open 24.0

Sudden Enlargement 0.1

Sudden Contraction:

Area Ratio (A2/A;1) =0.2 0.4

Area Ratio (A2/A;1) = 0.4 0.3

Area Ratio (A2/A1) = 0.6 0.2

Area Ratio (A2/A;) = 0.7 0.1

Example 4: B

A pipe transmits water from a tank A to A / 1

point C that is lower than water level in L N

the tank by 4 m. The pipe is 100 mm zZA zB N C
diameter and 15 m long. zc |

The highest point on the pipe B is 1.5 m above water level in the tank and 5 m
long from the tank. The friction factor (4 f) is 0.08, with sharp inlet and outlet
to the pipe.

a. Determine the velocity of water leaving the pipe at C?

b. Calculate the pressure in the pipe at the point B?

Solution

(@)  Applying Bernoulli’s equation between A and C,

Head loss due to entry (tank exit, from table) = 0.5 (V2c/29)



Head loss due to exit into air without contraction =0

4fL vac
Za+0+0=2Zc+0+ (V?d2g) + 0.5 (V?d/2g) + 0 + 2gd

4 = (v3c/2g) x {1 + 0.5 + (4x0.08x15)/0.1}

Ove =1.26 m/s

(b)  Applying Bernoulli’s equation between A and B,

2/2g) + 0.5 (v?e/2g) + 4f
VZB

Zpn+0+0=2Zg+Pg/pg+(ve 2gd

- 1.5 = Pg/(1000x9.81) + (1.26%/2x9.81) * {1 + 0.5 + (4x0.08x5)/0.1}

OPg = - 28.61 kN/m?

Elow through Pipe Systems:

Pipes in Series:
Pipes in series are pipes with different diameters and lengths connected together

forming a pipe line. Consider pipes in series discharging water from a tank with
higher water level to another with lower water level, as shown in the figure.
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Neglecting secondary losses,
it is obvious that the total head
loss HL between the two tanks
is the sum of the friction losses
through the pipe line.

hf3
Friction losses through the pipe line are the sum of friction loss of each pipe.
HL=hf1+hf2+hf3+ ...

HL = 4f1L1vl 2 + 4f2L.2v2 2 + 4f3L3v3 2 + ...

2gd1 29d2 29d3

HL = 32f1L1Q 2 + 32f2L2Q 2 + 32f3L3Q 2 +.....

02gdl5  p29d25 O29d35

Pipes in Parallel:
Pipes in parallel are pipes with different diameters and same lengths, where

each pipe is connected separately to increase the discharge. Consider pipes in
parallel discharging water from a tank with higher water level to another with
lower water level, as shown in the figure.

Neglecting minor losses, it is |

obvious that the total head loss HL

HL between the two tanks is the - —
same as the friction losses

\Ql
through each pipe. ‘m




The friction losses through all pipes are the same, and all pipes discharge water
independently.

HL=hf1=hf2=...

L1=L2=L

HL=4flLv12 = 4f2Lv22 =....

2gdl 29d2

HL=32flLQ12=32f2L Q22 =....

O02gdls 029d25
Q=Q1+Q2
Example 5:

A pipe, 40 m long, is connected to a water tank at one end and flows freely in
atmosphere at the other end. The diameter of pipe is 15 cm for first 25 m from
the tank, and then the diameter is suddenly enlarged to 30 cm. Height of water
in the tank is 8 m above the centre of pipe. Darcy’s coefficient is 0.01.
Determine the discharge neglecting minor losses?

Solution 41=0.04

Loss due to friction, his=hs + hp

Sm
di=015m $2203m |

25m | 1.5m
|




e = 32fLQ2 f=0.01
O02gd5
2
Total losses, hr=Q(32fL;_ + 32flL,)
2 5 2 5
O gd: O gdo

2

8 =0 ((32x0.01) x (25) + ) (32?2(0.01) (£5)
2 5

O g (0.15) O0g(0.3)
3

[0Q = 0.087 m /sec

10
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Example

6.

Two pipes are connected in parallel between two reservoirs that have difference
in levels of 3.5 m. The length, the diameter, and friction factor (4 f) are 2400 m,

m, and 0.026 for the first pipe and 2400 m, 1 m, and 0.019 for the

secondpipe.

Calculate the total discharge between the two reservoirs?

Solution

HL=32f1LQ1l2 =32f2L Q22

O02gd1l5 O2gd25

3.5=32f1L Q12 =8x0.026x2400xQ1 2

02gdl5 02x9.81 x1.2 5

Q1 =1.29 m3/sec

3.5=3212L Q22 =8x0.019x2400xQ2 2

029d25 02x9.81 x1 5

Q2 =0.96 m3/sec

0Q=0Q1+Q2=1.29 + 0.96 = 2.25 m3/sec

Hydraulics- 2020

Rambabu kumar
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Example

7:

Two reservoirs have 6 m difference in water levels, and are connected by a pipe
60 cm diameter and 3000 m long. Then, the pipe branches into two pipes each
30 cm diameter and 1500 m long. The friction coefficient is 0.01.

Neglecting minor losses, determine the flow rates in the pipe system?

Solution _ -

1

ht = hi1 + he2 he | g
6 =hn + he

6 =ky Q12 + ko Q22

ki = 32 f1 L1 =32*0.01*3000 =127.64
02 g d15 02*9.81*0.65
k2 = 322 L2 =32*0.01*1500 =4084.48

029d25 02*9.81*0.35

Hydraulics- 2020 Rambabu kumar

14
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Example

kz =32 k1

0 6=k Q12+ 32k Q22

he, = hs & ko=ks 0Q2=Qs3
Qi=Q2+Q3=20Q;

06=k Q2 +8ki Qi2=9k; Q2= (9 *127.64) Q.2 = 1148.76 Q2

0 Q; =0.072 m¥/s

& Q, =0.036 m¥/s

8:

Two tanks A and B have 70 m difference in water levels, and are connected by
a pipe 0.25 m diameter and 6 km long with 0.002 friction coefficient. The pipe
is tapped at its mid point to leak out 0.04 m®/s flow rate. Minor losses are
ignored.

Determine the discharge leaving tank A?
Find the discharge entering tank B?

Solution = hqo =

A ]

ht= hs + he he ;’
70 = hgyg + hpp :

Hydraulics- 2020 Rambabu kumar
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Example

70 = k; Q12 + ko sz

ki=ko= 32fL = 32*0.002*3000 = 2032.7

02 gd5 02%9.81*0.255
070 =k, le + ky sz

Q1=Q2+Q3=Q2+0.04

070 =k (Q2+0.04)% + ky Q22
= k1 (Q22 + 0.08 Q; + 0.0016) + ki Q2
= ky; Q22+ 0.08 ky Q2 + 0.0016 kg + ki Q22
= 2 ki Q22+ 0.08 k; Q, + 0.0016 k;
= 4065.4 Q22 + 162.6 Qo+ 3.25
0.0172 = Q 2+ 0.04 Q + 0.0008
Q2+0.04Q-0.0164=0
_ —0.04 +/(—0.04)? — 4(1)(—0.0164)
2(1)

0Q,=0.11m%s & Q1=0.15m’s
9:

A tank transmits 100 L/s of water to the point C where the pressure is
maintained at 1.5 kg/cm?. The first part AB of the pipe line is 50 cm diameter
and 2.5 km long, and the second part BC is 25 cm diameter and 1.5 km long.
The friction coefficient is 0.005 and minor losses are ignored.

Hydraulics- 2020 Rambabu kumar
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Example

Assuming level at C is (0.0); find the water level (L) in the tank?

Solution

d

hc=Pc/,=1500/1=1500cm=15m

hc =15 =L — htag - htac

hiag = 32 f1 L1 = 32*0.005*2500 = 1.32

02 g d15 02*9.81*0.55

hsc = 32 f2 L2 = 32*0.005*1500 = 25.38

O02gd25  [02*%9.81*0.255

15=L-1.32-25.38

Hydraulics- 2020 Rambabu kumar
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Example

OL=417m

Hydraulics- 2020

4 semester- 2020

Rambabu kumar
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Example

10:
Three water tanks A, B and C with water surface levels (100.00), (50.00) and

(10.00) m are connected by pipes AJ, BJ and CJ to a common joint J of a level

(45.00) m. The three pipes have the same length, diameter and friction
coefficient.

a) Calculate the head at the joint J?
b) Determine the discharge in each pipe?

Solution

A . (100.00)

(50.00) B

(45.00)

(10.00)

Assume QAJ=QJB + QJC

Applying Bernoulli’s equation between A and J:

HA = HJ + hf AJ
100+ 0+ 0=HJ+ hf AJ
100 - HJ = hf AJ = K Q2AJ

where, K=32fl1/02gd5

Hydraulics- 2020 Rambabu kumar
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QAI=(100-HJI) 12/ (K) 12 e (1)

Similarly, applying Bernoulli’s equation between J and B:

HJ=HB + hfJB

HJ - 50 = hf JB = KQ2JB

QIB=(HI-50)1/2/(K)1/2 oo 2)

Also, applying Bernoulli’s equation between J and C:

HJ = HC + hf JC

HJ - 10 = hf JC = K Q2JC

QIC=(HI-10)1/2/ (K)1/2 e (3)

Solving equations 1, 2 and 3 by trial and error, we get:

Assumed HJ | QAJ x (K)1/2 | JB x(K)1/2 | QJC x (K)1/2 | (QJIB+QJIC)x(K)1/2

70 5.48 4.47 7.745 12.216
60 6.325 3.162 7.07 10.233
53 6.855 1.732 6.557 8.289
o1 7 1 6.4 7.4
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50.5 7.036 0.707 6.364 7.07

50.45 7.039 0.671 6.36 7.031
50.4 7.043 0.632 6.356 6.988
50 7.071 0 6.324 6.324

From the table:

HJ =50.45m

QAJ = 7.039 / (K)1/2

QJB =0.671/ (K)1/2

QJC = 6.36 / (K)1/2

It has to be noted that if HJ < 50, then the flow will be from B to J.

Exercise:

Three water tanks A, B and C are connected to a joint J by three pipes AJ, BJ
and CJ such that the water level in tank A is 40 m higher than tank B and 55 m
higher than tank C. Each pipe is 1500 m long, 0.3 m diameter and f = 0.01.

Calculate the discharges and directions of flow?
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Solution

Taking the water level in the tank C as a datum, the results are:

HJ =18 m

QAJ = 0.134 m3/sec

QJB = 0.038 m3/sec

QJC =0.094 m3/sec
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Chapter-I

HYDROSTATICS

Hydrostatic is that branch of science which relating to fluids at restor to
the pressures they exert or transmit Hydrostatic Pressure.

Fluid:-

Fluid is a substance that continuously deforms (flows) under an applied shear
stress. Fluids are a subset of the phase of matter and include liquids, gases,
plasmas and, to some extent, plastic solids. Fluids can be defined as substances
which have zero shear modulus or in simpler terms a fluid is a substance which
cannot resist any shear force applied to it.

% Fluid is a substance which is capable of flowing

% Conform the shape of the containing vessel
% Deform continuously under application of small shear force
PROPERTIES OF FLUID:-

Density:-

The density of a fluid, is generally designated by the Greek symbol p(rho);s
defined as the mass of the fluid over a unit volume of the fluid at standard
temperature and pressure. It is expressed in the SI system as kg/m?3.

. Am_ dm
p=lim~ =
AV dV
If the fluid is assumed to be uniformly dense the formula may be simplified as:
_n
p =
\Y

Example: - setting of fine particles at the bottom of the container.
Specific Weight:-

The specific weight of a fluid is designated by the Greek symbol{(gamma), and is
generally defined as the weight per unit volume of the fluid at standard
temperature and pressure. In SI systems the units is N/m3.

A=p*g



g = local acceleration of gravity and p = density
Note: Itis customary to use:

g =32.174 ft/s?> = 9.81 m/s?

p =1000 kg/m?3

Relative Density (Specific Gravity):-

The relative density of any fluid is defined as the ratio of the density of that fluid
to the density of the standard fluid. For liquids we take water as a standard fluid
with density p=1000 kg/m3. For gases we take air or Oz as a standard fluid with
density, p=1.293 kg/m53.

Specific volume:-

Specific volume is defined as the volume per unit mass. It is just reciprocal of
mass density. It is expressed in m3/kg.

Viscosity:-

Viscosity (represented by p, Greek letter mu) is a material property, unique to
fluids, that measures the fluid's resistance to flow. Though a property of the fluid,
its effect is understood only when the fluid is in motion. When different elements
move with different velocities, each element tries to drag its neighboring
elements along with it. Thus, shear stress occurs between fluid elements of

different velocities.

Viscosity is the property of liquid which destroyed the relative motion between
the layers of fluid.

% It is the internal friction which causes resistance to flow.

% Viscosity is the property which control the rate of flow of liquid
Viscosity is due to two factors-

a) Cohesion between the liquid molecules.

b) Transfer of momentum between the molecules.
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The relationship between the shear stress and the velocity field was that the
shear stresses are directly proportional to the velocity gradient. The constant of
proportionality is called the coefficient of dynamic viscosity.

Ju
oy
UNIT OF VISCOSITY

% In mks system unit of viscosity is kgf-sec/m?

% In cgs system unit of viscosity is dyne-sec/cm?

% In S.I system unit of viscosity is Newton-sec/m?

Kinematic viscosity:-

Another coefficient, known as the kinematic viscosity ( @/, Greek nu) is defined as
the ratio of dynamic viscosity and density.

Let, ™ mhbo - viscosity/density

In mks & S.I system unit of kinematic viscosity is meter?/sec
In cgs system unit of kinematic viscosity is stoke.
SURFACE TENSION:-

Surface tension is defined as the tensile force acting on the surface of a liquid in
contact with a gas or on the surface between two immiscible liquids such that the
contact surface behaves like a membrane under tension. The magnitude of this
force per unit length of the free surface will have the same value as the surface
energy per unit area. It is denoted by Greek letter sigma(c). In MKS units, it is
expressed as kgf/m while in SI unit is N/m.

It is also defined as force per unit length, or of energy per unit area. The two are
equivalentrbut when referring to energy per unit of area, people use the term



surface energyrwhich is a more general term in the sense that it applies also to
solids and not just liquids.

Capillarity:-

Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small
tube relative to the adjacent general level of liquid when the tube is held
vertically in the liquid. The rise of liquid surface is known as capillary rise while
the fall of the liquid surface is known as capillary depression. It is expressed in
terms of cm or mm of liquid. Its value depends upon the specific weight of the
liquid, diameter of the tube and surface tension of the liquid.

Pressure and its measurement:-
INTENSITY OF PRESSURE:-

Intensity of pressure is defined as normal force exerted by fluid at any point per
unit area. It is also called specific pressure or hydrostatic pressure

P=df/da

% If intensity of pressure is uniform over an area A then pressure force

exerted by fluid equal to
Mathematically F=PA

% If intensity of pressure is not uniform or vary point to point then pressure
force exerted by fluid equal to integration of P*A

Mathematically F=[ PA

O
%

Unit of pressure

»  1N/m? =1 Pascal
»  1KN/m?= 1 kilo Pascal
+ Kilo Pascal= 1kpa = 103 Pascal

+ 1 bar =10°Pascal = 10° N/m?

Pascal’s law:-

It states that the pressure or intensity of pressure at a point in a static fluid is



equal in all direction.
Atmospheric Pressure:-

The atmospheric air exerts a normal pressure upon all surface with which it is in
contact and it is called atmospheric pressure. It is also called parametric pressure.

Atmospheric pressure at the sea level is called standard atmospheric pressure.
S.AP =101.3 KN/m? = 101.3 kpa = 10.3m of H20

=760 mm of Hg

=10.3 (milli bar)
Gauge pressure:-

It is the pressure which measure with help of pressure measuring device in
which atmospheric pressure taken as datum.

The atmospheric pressure on scale is marked as zero.

Absolute pressure:-

Any pressure measure above absolute zero pressure is called absolute pressure.
Vacuum pressure:-

Vacuum pressure is defined as the pressure below the atmospheric pressure.

RELATIONSHIP BETWEEN ABSOLUTE PRESSURE, GAUGE
PRESSURE,VACUUM PRESSURE:-

PE‘QEE
15 4 | 2=
R;as
Pan-n Pann Pab
Pa!::

+— P ;.= 0 = Absolute vacuum

Fig. 1.2



% Equations

Pgage = Labs I:l-Patm

gauge pressure

Pvac = Latm I:lf)abs

vacuum pressure

Pabs = Patm + Pgage

absolute pressure

< Nomenclature

Py absolute
pressure
Pgage gage
pressure
Py vacuum
pressure
P.om atmospheric
pressure

Pressure Head:-

pressure head is the internal energy of a fluid due to the pressure exerted on its
container. It may also be called static pressure head or simply static head (but not

static head pressure). It is mathematically expressed as:

v

where

_b_op
Y P8

Vis pressure head (Length, typically in units of m);

P is fluid pressure (force per unit area, often as Pa units); and

7 is the specific weight (force per unit volume, typically N/m3 units)

P is the density of the fluid (mass per unit volume, typically kg/m?)

f is acceleration due to gravity (rate of change of velocity, given in m/s?)

If intensity of pressure express in terms of height of liquid column, which causes
pressure is also called pressure head.

Mathematically, h= P/w

Pressure Gauges :-




The pressure of a fluid is measured by the following devices:-
1. manometers
2. mechanical gauges

Manometers:-Manometers are defined as the devices used for measuring the
pressure at a point in a fluid by balancing the column of fluid by the same or
another column of the fluid. They are classified as:

a) Simple manometers
b) Differential manometer

Mechanical gauges:-mechanical gauges are defined as the devices used for
measuring the pressure by balancing the fluid column by the spring or dead
weight. The commonly used mechanical gauges are:-

a) Diaphragm pressure gauge

b) Bourdon tube pressure gauge

c) Dead weight pressure gauge

d) Bellows pressure gauge
PRESSURE EXERTED ON IMMERSED
SURFACE:-Hydrostatic forces on surfaces:-

Hydrostatic means the study of pressure exerted by a liquid at rest. The direction
of such pressure is always perpendicular to the surface to which it acts.

Forces on Submerged Surfaces in Static Fluids

These are the following features of statics fluids:-

+ Hydrostatic vertical pressure distribution
Pressures at any equal depths in a continuous fluid are equal
Pressure at a point acts equally in all directions (Pascal's law).

Forces from a fluid on a boundary acts at right angles to that boundary.

Fluid pressure on a surface:-

Pressure is defined as force per unit area. If a pressure p acts on a small area 6A
then the force exerted on that area will be



F = pdA



TOTAL PRESSURE:-

Total pressure is defined as the force exerted by a static fluid on a surface when
the fluid comes in contact with the surface.

Mathematically total pressure,
P=p1a1 + poAo+ P3Q30000.
Where,

p1, P2, p3 = Intensities of pressure on different strips of the surface, and
a1, az, a3 = Areas of corresponding strips.

The position of an immersed surface may be,

Horizontal
«  Vertical

Inclined

Total Pressure On A Horizontal Immersed Surface
Consider a plane horizontal surface immersed in a liquid as shown in figure 1.

Liguid Surface

Fig. 1.3

® = Specific weight of the liquid
A= Area of the immersed surface in in2

X = Depth of the horizontal surface from the liquid level in meters

We know that the Total pressure on the surface,

P = Weight of the liquid above the immersed surface



= Specific weight of liquid * Volume of liquid
= Specific weight of liquid * Area of surface * Depth of liquid

— ®AxkN

Total Pressure On A Vertically Immersed Surface
Consider a plane vertical surface immersed in a liquid shown in figure 2.

Liquid Surface
................ Y ———————
e
v i
T
A A
Fig. 1.4

Let the whole immersed surface is divided into a number of small parallel stripes
as shown in figure.

Here,

®= Specific weight of the liquid
« A =Total area of the immersed surface

X = Depth of the center of gravity of the immersed surface from the liquid
surface

Now, consider a strip of thickness dx, width b and at a depth x from the free
surface of the liquid.

The intensity of pressure on the strip = ®X
and the area of strip =b.dx
Pressure on the strip = Intensity of pressure * Area = ®X.bdx

Now, Total pressure on the surface,



p ZJ'WX.bdX

= wj x.bdx

x.bdx -
But, = Moment of the surface area about the liquid level = AX

P =wAx
FLOTATION AND BUOYANCY :-
Archimedes Principle:-

Archimedes' principle indicates that the upward buoyant force that is exerted on
a body immersed in a fluid, whether fully or partially submerged, is equal to the
weight of the fluid that the body displaces. Archimedes' principle is a law of
physics fundamental to fluid mechanics. Archimedes of Syracuse formulated this
principle, which bears his name.

Buoyancy:-

When a body is immersed in a fluid an upward force is exerted by the fluid on the
body. This is upward force is equal to weight of the fluid displaced by the body
and is called the force of buoyancy or simple buoyancy.

Centre of pressure:-

The center of pressure is the point where the total sum of a pressure field acts on
a body, causing a force to act through that point. The total force vector acting at
the center of pressure is the value of the integrated pressure field. The resultant
force and center of pressure location produce equivalent force and moment on
the body as the original pressure field. Pressure fields occur in both static and
dynamic fluid mechanics. Specification of the center of pressure, the reference
point from which the center of pressure is referenced, and the associated force
vector allows the moment generated about any point to be computed by a
translation from the reference point to the desired new point. It is common for
the center of pressure to be located on the body, but in fluid flows it is possible for
the pressure field to exert a moment on the body of such magnitude that the
center of pressure is located outside the body.

Center of buoyancy:-

It is define as the point through which the force of buoyancy is supposed to act. As
the force of buoyancy is a vertical force and is equal to the weight of the fluid
displaced by the body, the center of buoyancy will be the center of gravity of the



fluid displaced.
METACENTER:-

The metacentric height (GM) is a measurement of the initial static stability of a
floating body. It is calculated as the distance between the centre of gravity of a
ship and its metacentre. A larger metacentric height implies greater initial
stability against overturning. Metacentric height also has implication on the
natural period of rolling of a hull, with very large metacentric heights being
associated with shorter periods of roll which are uncomfortable for passengers.
Hence, a sufficiently high but not excessively high metacentric height is
considered ideal for passenger ships.

Fig. 1.5
The metacentre can be calculated using the formulae:
KM=KB+BM
BM = 1
\Y

Metacentric height:-

The distance between the meta-center of a floating body and a center of gravity of
the body is called metacentric height.

MG =BM-BG

MG=I/V-BG

Stability of a submerged body:-

Stable condition:-

% For stable condition w = fp and the point B above the CG of the body.
Unstable equilibrium;-

% For unstable equilibrium w = fp and the point B is below the CG of the body.
Neutral equilibrium:-

% If the force of buoyancy is act as CG of the body.
Stability of a floating body:-

% For stable condition w = f» and the meta centre m is about the CG of the
body.

% For unstable equilibrium w = f» and the metacentre m is below CG of the
body.



% In neutral equilibrium w = fj and metacentre m is acting at CG of the
body.



Chapter-11

KINEMATICS OF FLUID FLOW
Basic equation of fluid flow and their application:-

Energy of a Liquid in Motion:-

The energy, in general, may be defined as the capacity to do work. Though the
energy exits in many forms, yet the following are important from the subject
point of view:

1. Potential energy,

2. Kinetic energy, and

3. Pressure energy.

Potential Energy of a Liquid Particle in Motion:-

It is energy possessed by a liquid particle by virtue of its position. If a liquid
particle is Zm

above the horizontal datum (arbitrarily chosen), the potential energy of
the particle will be Z metre-kilogram (briefly written as mkg) per kg of the
liquid. The potential head of the liquid, at

point, will be Z metres of the liquid.

Kinetic Energy of a Liquid Particle in Motion:-

It is the ehergy, possessed by a liquid particle, by virtue of its motion or
velocity. If a liquid particle is flowing with a mean velocity of v metres per
second; then the kinetic energy of the particle will be V2/2g mkg per kg of the
liquid. Velocity head of the liquid, at that velocity, will be V2/2g metres of the
liquid.

Pressure Energy of a Liquid Particle in Motion:-

It is the energy, possessed by a liquid particle, by virtue ofits existing

pressure. If a liquid particle is under a pressure of p kN/m2 (i.e., kPa), then
p

the pressure energy of the particle-will be W. mkg per kg of the liquid, where
w is the specific weight of the liquid. Pressure head of the liquid

p

under that pressure will be W- metres of the liquid.

Total Energy of a Liquid Particle in Motion:-
The total energy of a liquid, in motion, is the sum of its potential energy,
kinetic energy and pressure energy, Mathematically total energy,
b
E = Z+V?/2g + W- m of Liquid.
Total Head of a Liquid Particle in Motion:-



The total head of a liquid particle, in motion, is the sum of its potential head,
kinetic head and pressure head. Mathematically, total head,

P
H=Z7Z+V?/2g + W-m of liquid.
Example
Water is flowing through a tapered pipe having end diameters of 150 mm and
50 mm respectively. Find the discharge at the larger end and velocity head at
the smaller end, if the velocity of water at the larger end is 2 m/s. Solution.
Given: d1=150mm = 015 m ; d2= 50 mm= 0205 m and V1 = 25 m/s. Discharge at
the larger end We know that the cross-sectional area of the pipe at the larger
end,

L x(015)2=
ai= 4 17.67% 10 *m?
and discharge at the larger end,
Q1 =anvi = (17.67x10*)x2.5 = 44.2x103 m3/s

= 44.2]itres/s Ans.

Velocity head at the smaller end

We also know that the cross-sectional area of the pipe at the smaller end,
L y(0.15)2=

A= 4 1.964% 10 3m?

Since the discharge through the pipe is continuous, therefore

a:1. V1 = A2.V2
al.vl

or v2= a2 = [(17.67x103) x 2.5]/1.964 x 103 = 22.5m/s

.. Velocity head at the smaller end
2/2g=(22.5)?/2x 9.81=25.8 m Ans

Bernoulli s Equation:-

It states, For a perfect incompressible liquid, flowing in a continuous stream,
the total nergy; of a particle remains the same, while the particle moves from
one point to another. This statement is based on the assumption that there are
no losses due to friction in the pipe. Mathematically,

p
Z+V2/2g + W. =Constant
where
Z = Potential energy,
V2/2g =Kinetic energy, and

p
W. = Pressure energy.
Proof

Consider a perfect incompressible liquid, flowing through a non-uniform pipe



as shown in Fig-

B A
Y Datum line dh

Fig. 2.1

Let us consider two sections AA and BB of the pipe. Now let us assume that the
pipe is running full and there is a continuity of flow between the two sections.

Let

Z1 = Height of AA above the datum,

P1= Pressure at AA,

V1 = Velocity ofliquid at AA,

A1 = Cross-sectional area of the pipe at AA, and

Z2,P2,V2,A2= Corresponding values at BB.

Let the liquid between the two sections AA and BB move to A' A' and B' B'
through very small lengths dli and dlz as shown in Fig. This movement of the
liquid between AA and BB is equivalent to the movement 'of the liquid between
AA and A' A' to BB and B' B', the remaining liquid between A" A" and BB being
uneffected.

Let W be the weight of the liquid between AA and A' A'. Since the flow is
continuous, therefore

W = waidls = wazdLz

w
or aixdh=W (1)
w
Similarly a2dlz=W
~a1 .dL1 = azdL2 .(ii)

We know that work done by pressure at AA, in moving the liquid to A" A’
= Force x Distance =Pi1.a1.dL1

Similarly, work done by pressure at BB, in moving the liquid to B' B’
=-P2a2dl2

..(Minus sign is taken as the direction of P2 is opposite to that of P1)

.. Total work done by the pressure

= Pi1aldli- Pzazdl2

=Pi1aldli-pzaldls



D(ai1dli=azdl2)
\\%

= ardli (P1- P2) = W (P1-P2)o(ardh =
Loss of potential energy =W (Z1-Z2)

3l=

and again in kinetic energy =W[(V 2/2g)-(V 2/2g)]=_’v‘yg (v2v?
2 1 2 1

We know that loss of potential energy + Work done by pressure
= Gain in kinetic energy

W W
. W (Z1-Z2)+ W (P1-P2) = Z'g'(v ZZ_V 12)

(Z1-Z2)+(p1/w)-(p2/W)=v2*/2g-v1*/ 28
Or Z1+ v3/2g+ (p {W)=Z # v 3/2g+(p 4w)
which proves the Bernoulli's equation.

Euler's Equation For Motion

The "Euler's equation for steady flow of an ideal fluid along a streamline is
based on the

Newton's Second Law of Motion. The integration of the equation gives
Bernoulli's equation in the form of energy per unit weight of the flowing fluid.
It is based on the 'following assumptions:

1. The fluid is non-viscous (i.e., the frictional losses are zero).

2.  The fluid is homogeneous and incompressible (i.e., mass density of the
fluid is constant).

3. The flow is continuous, steady and along the streamline.

4. The velocity of flow is uniform over the section.

5. No energy or force (except gravity and pressure forces) is involved in the
flow.

Consider asteady' flow of an ideal fluid along a streamline. Now consider a
small element

AB of the flowing fluid as shown in Fig.

Let

dA = Cross-sectional area of the fluid element,
ds = Length of the fluid element,

dW = Weight of the fluid 5!1ement,

p = Pressure on the element at A,

p + dp = Pressure on the element at B, and

v = Velocity of the fluid element.

We know that the external forces tending to accelerate
element in the direction of the streamline

= p. dA- (p +dp)dA

= -dp.dA

We also know that the weight of the fluid element,




dwW = p g. dA.ds
From the geometry of the figure, we find that the component of the weight of
the fluid element
,in the direction of flow
= - pPg.dA.dscos?
dz dz
- P g.dA. ds(ds) cxos =ds
- P g dA. dz
~mass of the fluid element =p dA.ds
,We see that the acceleration of the fluid element
dv dv ds dv
dt _ds dt Uds
Now, as per Newton's Second Law of Motion, we know that
Force = Mass x Acceleration

dv

(-dp.dA)- (Pg.dA.dz-)= £ .dA.ds *ds
@ + g.dz =v.dv
P (dividing both side by -
pdA )

dp

—+g.dz+v.dv=20
Or 2
This is the required Euler's equation for motion and is in the form of a
differential equation. Integrating the above equation,

1
EJ-dp + Ig. dz + J-‘L". dv = constant

yol
—+ g;+v? =constant

[ /2
P + wZ +Wv?/2g=constant
p

w+Z+ v2/2g=constant (Dividing by w)
or in other words, w+Zi+(v 2/2g)= w +Z +(v 2/2g)
1 2 2

which proves the Bernoulli's equation.

Limitations of Bernoulli's Equation:-

The Bernoulli's theorem or Bernoulli's equation has been derived on
certain assumptions, which are rarely possible. Thus the Bernoulli's theorem
has the following limitations:

1. The Bernoulli's equation has been derived under the assumption that the
velocity of every liquid particle, across any cross-section of a pipe, is
uniform. But, in actual practice, itis not so. The velocity of liquid particle
in the centre of a pipe is maximum and gradually decreases towards the
walls of the pipe due to the pipe friction. Thus, while using the
Bernoulli's equation, only the mean velocity of the liquid should be



taken into account.

The Bernoulli's equation has been derived under the assumption that
no external force, except the gravity force, is acting on the liquid. But, in
actual practice, it is not so. There are always some external forces (such
as pipe friction etc.) acting on the liquid, which effect the flow of the
liquid. Thus, while using the Bernoulli's equation, all such external forces
should be neglected. But, ifsorne energy is supplied to, or, extracted from
the flow, the same should also be taken into account.

The Bernoulli's equation has been derived, under the assumption that
there is. no loss of energy of the liquid particle while flowing. But, in
actual practice, -it is rarely so. In a turbulent flow, some kinetic energy is
converted into heat energy. And in a viscous flow, some energy is lost
due to shear forces. Thus, while using Bernoulli's equation, all such
losses should be neglected.

If the liquid is flowing in a curved path, the energy due to centrifugal
force should also be taken into account.

Example

The diameter of a pipe changes from 200 mm at a section 5 metres-above
datum = to 50 mm at a section 3 metres above datum. The pressure of water at
first section is 500 kPa. If the velocity of flow at the first section is 1 m/s,
determine the intensity of pressure at the second section.

Solution.'Gi~en: di=200mm=0.2m;Z1=5m;d2 =50mm=0.05 m zz =3 m;
p =500/

kPa =500 kN/m2 and V1 =1 mls.

Let

V2

P2 = Pressure atsection 2. We know that area of the pipe at section 1 ai1=%

= Velocity of flow at section 2, and

T
% (0.2

2=31.42% 103m?

i
and area of pipe at section 2 ai=4 005 2_1 964% 10-3m?
Since the discharge through the pipe is continuous,therefore ai. Vi = az. V2

al.vl

Vo= a2z =[(31.42% 10 -3)x1]/1.964% 10 3=16m/s

am
Datum Line

Fig. 2.3

Applying Bernoulli's equation for both the ends of the pipe,
Z1+ v12/2g+ (p1/w)=Za2+ v2%/2g+(p2/W)



p2
5+(1)%/(2¢ 9.61 ) +500/9.81=3+(16)?/2X9.81+ 9.81
P2 =40x9.81 =392.4 kN/m? =392.4 kPa Ans

practical  Applications of Bernoulli's  Equation

The Bernoulli's theorem or Bernoulli's equation is the basic equation which
has the widest applications in Hydraulics and Applied Hydraulics. Since this
equation is applied for the derivation

.of many formulae, therefore its clear understanding is very essential. Though
the Bernoulli's equation has a number of practical applications. yet in this
chapter we shall discuss its applications on the following hydraulic devices :

1. Venturi meter.

2. Orifice meter.

3. Pitot tube.

Venturimeter

l IL

W\-Tm

Fig. 2.4

A venturi meter is an apparatus for finding out the discharge of a liquid
flowing in a pipe. A- venture meter, in its simplest form, consists of the
following three parts:

(a) Convergent cone.

(b) Throat.

(c) Divergent cone.

(a) Convergent cone

It is a short pipe which converges from a diameter di (diameter of the pipe.
in which the venture meter is fitted) to a smaller diameter d2: The convergent
cone is also known as inlet of the venturi meter. The slope of the converging
sides is between 1 in 4 or 1 in 5 as shown in Fig.

(b) Throat

It is a small portion of circular pipe in which the diameter d: is kept constant
as shown in Fig.

(c) Divergent cone

It is a pipe, which diverges from a diameter d2 to a large diameter di. The
divergent cone is also known as outlet of the venture meter. The length of the



divergent cone is about 3 to 4 times than that of the convergent cone as shown
in Fig.

A little consideration will show that the liquid, while flowing through the
venture meter, is accelerated between the sections 1 and 2 (i.e., while flowing
through the convergent cone). As a result of the acceleration, the velocity of
liquid at section 2 (i.e., at the throat) becomes higher than that at section 1.
This increase in velocity results in considerably decreasing the pressure at
section 2.1fthe pressure head at the throat falls below the separation head
(which is 2.5 metres of water), then there will be a tendency of separation of
the liquid flow, In order to avoid the tendency of separation at throat, there is
always a fixed ratio of the diameter of throat and the pipe (i.e.,, dz/dt). This ratio
varies from 1/4 to 3/4, but the most suitable valueis1/3 to 1/2.

The liquid, while flowing through the venture meter, is decelerated (i.e,
retarded) between the sections 2 and 3 (i.e, while flowing through the
divergent cone). As a result of this retardation, the velocity of liquid decreases
which, consequently, increases the pressure. If the pressure is rapidly
recovered, then there is every possibility for the stream of liquid to break away
from the walls of the metre due to boundary layer effects. In order to avoid the
tendency of breaking away the stream of liquid, the divergent cone is made
sufficiently longer. Another reason for making the divergent cone longer is to
minimise the frictional losses. Due to these reasons, the divergent cone is 3 to
4 times longer than convergent cone as shown in Fig.

Discharge through a Venturi meter

Consider a venture meter through which some liquid is flowing as shown in
Fig.

Fig. 2.5

Let
P1 = Pressure atsection 1,

V1 = Velocity of water at section 1,

Z1 = Datum head at section 1,

a1 = Area of the venturi meter at section 1, and
p 2,v2,z2,a2 = Corresponding values at section 2.

Applying Bernoulli's equation at sections 1 and 2. i.e



Z1+ v £[2g+ (p1/W)=Z 2+ v £/28+(p o/ W) 0o.(1)
Let us pass our datum line through the axis of the venture meter as shown in
Fig.
Now Z1=0 and Z2=0

vi/2g+ (py/w)=v7/2g+(pz/W)
Or (p1/w)-( p2/w)=v*/2g- vi*/2g r.(2)
Since the discharge at sections 1 and 2 is continuous, therefore
V1=a2V2/a1 (a1vi=azvz)

=a’v #/a;? 11.(3)
Substituting the above value of v 7 in equation (2),
pl pz
w o w =v£/2g-(a2/a?X v £/2g)

=v#/2g(1-a/ai?)= v’ /2g[(ai*-a) /ai’]
p1_p2

We know that w  w is the difference between the pressure heads at sections 1
and 2 when the pipe is horizontal, this difference represents the venturi head

and is denoted by h.
Or h= VZ/Zg[(a az)/a 2]
Or v?i= Zghz[a 2/(a -a !

va= vV 20h[a1 A (a12-a22)]
We know that the discharge through a venture meter,

Q = Coefficient of venturi meter x az vz

=C.azvz= [Calaz/*"E (a12-a,2)] X« 2gh

Example

A venture meter with a 150 mm diameter at inlet and 100 mm at throat is,laid
with its axis horizontal and is used for measuring the flow of oil specific
gravity 0.9. The oil-mercury differential manometer shows a gauge difference
0of200 mm. Assume coefficient of the metre as 0.9 Calculate the discharge in
litres per minute.

Solution. Given: d1 = 150 mm = 0.15 m; d2 = 100 mm = 0.1 rn; Specific gravity of
oil = 0.9
h =200 mm = 0.2 m of mercury and C = 0.98.

We know that the area at inlet,



T
a1=2 < 013 2217 67x 103m?

and the area at throat,

T
az=1 " 01 227 854 10°m?
We also know that the difference of pressure head,
H=0.2(13.6-0.9/0.9)=2.82 m of oil
and the discharge through the venturi meter,

Q= [Ca1a2/‘¢|E(allz-azz)]-"< J2gh
=63.9 X 103m3/s=63.9lit/s Ans.

Orifice Metre

An orifice metre is used to measure the discharge in a pipe. An orifice metre,
in its simplest

form, consists of a plate having a sharp edged circular hole known as an
orifice. This plate is fixed inside a pipe as shown in Fig. c A mercury
manometer is inserted to know the difference

of pressures between the pipe an? the throat (i.e,or i _____ R
Let
h = Reading of the mercury manometer,
P1 = Pressure at inlet,
Vi1 = Velocity of liquid at inlet,
a1 = Area of pipe at inlet, and
P2,v2,a2= Corresponding values

at the throat. Fig.

2.6

Now applying Bernoulli's equation for inlet of the pipe and the throat,

Z1+ vi?/2g+ (p1/wW)=Z2+ v22/2g+(p2/wW) (i)
(p1/w)-(pz/w)=v2?/2g-v1*/2g
Or h=v2?/2g-v1?/2g=1/2g(v2?-v1?) cr(ii)

Since the discharge is continuous, therefore ai.vi = azv2

Vi=az/a1 X vz or vi?=az?/a1? X vz2?

Substituting the above value of v1? in equation (ii)

h =1/2g(v22-az22/a12 X v22)=v2?/2g X (1- az%/a1?)=v2?/2g[(a1?-a2?) /a1?]
v22= 2gh[ai1?/(a12-a22)] or v2= v=2gh[a1/VE (a12-a22)]

We know that the discharge,

Q = Coefficient of orifice metre x az. vz



=[Caraz V= (a2-a,2) ] v 290

Example. An orifice metre consisting of 100 mm diameter orifice in a 250 mm
diameter pipe has coefficient equal to 0=65. The pipe delivers oil (sp. gr. 0c8).
The pressure difference on the two sides of the orifice plate is measured by a
mercury oil differential inano meter.lfthe differential gauge reads 80 mm of
mercury, calculate the rate of flow in litresls.

Solution. Given: d2 = 100 mm = 0.1 m; d1 = 250 mm = 0.25 m; C = 0.65 ; Specific

gravity
of 0oil = 0.8 and h = 0.8 m of mercury.

We know that the area of pipe,
T

a1=3 < %23 2249 0% 10-3m?

and area of throat

ki3
ar=2 1 227.854x 10-3m?
We also know that the pressure difference,
h = 0.8[(13.6-0.8)/0.8]=12.8 m of oil

and rate of flow,

Q=[Caiaz V= (a:2-a,2)]* J2gh
=82 X 103 m3/s=82lit/s Ans
Pitot Tube.

A Pitot tube is an instrument to determine the velocity of flow at the required
point in a pipe or a stream. In its simplest form, a pitot tube consists of a glass
tube bent a through 90° as shown in Fig.

The lower end of the tube faces the direction of the flow as shown in Fig. The
liquid rises up in the tube due to the pressure exerted by the flowing liquid. By
measuring the rise of liquid in the tube, = we can find out the velocity of the
liquid flow.

Let h = Height of theliquid in the pitot tube above the surface,




Fig. 2.7

H = Depth of tube in the liquid, and

v = Velocity of the liquid.

Applying Bernoulli's equation for the sections 1 and 2,
H+v?/2g=H+h

.(z1=22)

h =v?/2g

s v=v-2gh

Example .

A pltot tube was inserted in a pipe to measul!e the velocity of water in it. If (
water rises the tube is 200 mm, find the velocity of water.
Solution. Given: h =200 mm =0.2 m.

We know that the velocity of water in the pipe,
v=v-2gh =v5(2x9.81 x0.2) =1.98 m/s Ans.

Rate of Discharge

The quantity of a liquid, flowing per second through a section of a pipe or a
channel, is known as the rate of discharge or simply discharge. It is generally
denoted by Q. Now consider a liquid flowing through a pipe.

Let, a = Cross-sectional area of the pipe, and
v = Average velocity of the liquid,
.. Discharge, Q = Area x Average velocity = a.v

Notes: 1.If the area is in m? and velocity in m/s, then the discharge,
Q =m?xm/s =m3/s = cumecs
2. Remember that 1m3 = 1000 litres.

Equation of Continuity of a Liquid Flow

If an incompressible liquid is continuously flowing through a pipe or a channel
(whose cross- sectional area may or may not be constant) the quantity of liquid
passing per second is the same at all sections. This is known as the equation of
continuity of a liquid flow. It is the first and fundamental equation of flow.
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Fig. 2.8

CONTINUITY OF ALIQUID FLOW
Consider a tapering pipe through which some liquid is flowing as shown in Fig

Let, a1 = Cross-sectional area of the pipe at section 1-1, and
vi= Velocity of the liquid at section 1-1,
Similarly , a2, v2= Corresponding values at section 2-2,

and as,vs = Corresponding values at section 3-3.
We know that the total quantity of liquid passing through section 1-1,
Ql =da;v; DDDDDDDDDDD(i)
Similarly, total quantity of liquid passing through section 2-2,
Q2= a.u: oo (i)
and total quantity of the liquid passing through section 3-3,
Q3 = asvs nooooooo.(iii)

From the law of conservation of matter, we know that the total quantity of liquid
passing through the sections 1-1, 2-2 and 3-3 is the same. Therefore
Qi=Q2=Q3= ... Or ai.vi=azvz = dzU3 ... and so on.

Example : Water is flowing through a pipe of 100 mm diameter with an
average velocity

10 m/s. Determine the rate of discharge of the water in litres/s. Also determine
the velocity of water

At the other end of the pipe, if the diameter of the pipe is gradually changed to
200 mm.

Solution. Given: di= 100 mm = 0.1 m; V1 =10 m/s and d2= 200 mm = 0.2 m.
Rate of discharge
We know that the cross-sectional area of the pipe at point 1,

ai= G)x(0.1)2:7.854X10'3 m?
and rate of discharge, Q = a:.v: = (7.854x103)x 10 = 78.54 X 103 m3/s
= 78.54 litres/s Ans.
Velocity of water at the other end of the pipe



We also know that cross-sectional area of the pipe at point 2,
az=(g}x(0.2)2=3 1.42x1073 m?
b

and velocity of water at point 2 ,v2= a2 = ((78.54 X 103)/( 31.42x103))=2.5m/s Ans.



Flow over Notches:-

A notch is a device used for measuring the rate of flow of a liquid through a
small channel or a tank. It may be defined as an opening in the side ofa
tank or a small channel in such a way that the liquid surface in the tank or
channel is below the top edge of the opening.

A weir is a concrete or masonry structure, placed in an open channel over
which the flow occurs. Itis generally in the form of vertical wall, with a
sharp edge at the top, running all the way across the open channel. The
notch is of small size while the weir is of a bigger size. The notch is
generally made of metallic plate while weir is made of concrete or
masonry structure.

1. Nappe or Vein. The sheet of water flowing through a notch or over
a weir is called Nappe or Vein.

2. Crest or Sill. The bottom edge of a notch or a top of a weir over which
the water flows, is known as the sill or crest.

Classification Of Notches And Weirs:-
The notches are classified as :
I. According to the shape of the opening:

(a) Rectangular notch,

(b) Triangular notch,

(c) Trapezoidal notch, and

(d) Stepped notch.

2. According to the effect of the sides on the nappe:
(a) Notch with end contraction.

Ib) Notch without end contraction or suppressed notch e,

Weirs are classified according to the shape of the opening the' shape of the
crest, the effect of the sides on the nappe and nature of discharge. The
following are important classifications.



Discharge Over A Rectangular Notch Or Weir

The expression for discharge over a rectangular notch or weir is the same.

.

le— L — -
T
OR SILL (c) SECTION AT CRES g
Y A LT S L4 L Ll L CREST d
(a) RECTANGULAR NOTCH (b) RECTANGULAR WEIR
Fig. 2.9

Rectangular notch and ‘weir:-

Consider a rectangular notch or weir provided in a channel carrying water as
shown in Fig Let H = Head of water over the crest L = Length of the notch
or weir

Lx |2g[H]
— x
The total discharge, Q=3 ca NI g

Problem - 1

Find the discharge of water flowing over a rectangular notch 0/2 In length
when the constant head over the notch is 300 mm. Take c¢d = 0.60.

Solution. Given:

Length of the notch, L=2.0m

Head over notch, H =300 m =0.30 m

Ca=0.06

2. xLx |2g[H]
Discharge Q=3 " cd NI g

2
_3X06x2.0x¥Zx981x[030] 5m3)/s

=3.5435x0.1643 =0.582 m3/s. Ans,
Problem 2
Determine the height of a rectangular weir of length 6 m to be built across a

Rectangular channel. The maximum depth of water on the upstream side of
the weir is 1.8m and discharge is 2000 litres/s. Take Cd = 0.6 and neglect end
contractions.

Solution. Given:



Length of weir, L=6m

Depth of water, H1=1.8m

Discharge, Q = 2000 litls = 2 m3/s

Cd/=0.6

Let H is the height of water above the crest of weir and H2 =height of weir

The discharge over the weir is given by the equation .

2
- Lx |2
0=3%ci N 9tH,

2
2=3

2

x 0.6 % 6 x 42 % 9.81 x [H],,

=10.623 H3/2

2.0
=H3/2=10.623

2.0
H:(10-523)2/3:0.328 m
Height of weir, H2 = H1- H
= Depth of water on upstream side - H

=1.8- .328=1.472 m. Ans.

Discharge Over A Triangular Notch Or Weir:-

The expression for the discharge over a triangular notch or weir is the same. It
is derived as : Let H = head of water above the V- notch
& = angle of notch
8 tan & R—
Total discharge, Q=Ex ¢ T2 X2g xHs),

For a right angle V Notch ,if C4=0.6

g =90 O,tani=1

8 I
e i
Discharge, Q = T3 <06 X1XV2X981xH 5,
=1.417%xH 5/2 Fig. 2.11
Problem -1

Find the discharge over a triangular notch of angle 60° when the head

over the



V-notch is 0.3 m. Assume Cq = 0.6.

Solution. Given an Angle of V-notch, e = 60°
Head over notch, H=0.3 m

Ca= 0.6

Discharge, Q over a V-notch is given by equation

8 ng —_—
Qzﬁxﬂ dexfzngS/z

a WD LdIl ou

2 e X————x¥Zx0981x(03
i5%C, 2 (03)),

=0.8182 x 0.0493 = 0.040 m3/s. Ans,

Problem -2

Water flows over a rectangular weir 1 m wide at a depth of 150 mm and

afterwards passes through a triangular right-angled weir. Taking Ca for the

rectangular and triangular weir as 0.62 and 0.59 respectively, find the depth

over the triangular weir.

Solution. Given:

For rectangular weir. Length=L =1 m
Depth of water, H = 150mm=0.15m
Ca=0.62

For triangular weir.

& = 90°
Ca =0.59
Let depth over triangular weir =Hi

The discharge over the rectangular weir IS given by equation

2
0=3" ca bx ﬂlzg[m3/2

2
_3 % 0.62 % LOx vZX 981 x (0.15), ,

=0.10635 m3/s

The same discharge passes through the triangular right-angled
discharge. Q. is given by the equation

weir. But



g8 tanf —_—
Qzﬁxc dewang 5/2

8 tan 90
— X059 x

0.10635=15

8
X059 X1X4429xH ;5p
=15 1

=1.3936 H5/2
0.10635
H{f/2=1.39386
Hi=(0.07631)%4=0.3572m , Ans

— ..
® 2 xH - .
ves 1°/2 { € =90 o4nd H=H ,}

=0.07631

Discharge Over A Trapezoidal Notch Or Weir:-

A trapezoidal notch or weir is a combination of a rectangular and triangular
notch or weir. Thus the total discharge will be equal to the sum of discharge
through a rectangular weir or notch and discharge through a triangular notch
or weir.
Let H = Height of water over the notch

L = Length of the crest of the notch

Cd1 = Co-efficient or discharge. for rectangular portioo ABCD of Fig.
Ca2 = Co-efficient of discharge for triangular portion [FAD and BCE]
The-discharge through rectangular portion ABCD is given by

or Q1=§xc aXxL Xv‘%xff 3/2

The discharge through two triangular notches FDA and BCE is equal to the
discharge through a single triangular notch of angle e and it is given by
equation

Q2=§x(,‘ dszxv’zE}‘HS/Z

Discharge through trapezoldal notch or weir FDCEF = Q1 + Q2
2 8 tan &

—
=§xC dle,’ExH 3/2+EC dszwang 5/2

Problem -1 Find the discharge through a trapezoidal notch which is 1 m wide



at the tap and 0.40 m at the bottom and is 30 cm in height. The head of water
On the notch is 20 cm. Assume Ca for rectangular portion = 0.62 while for
triangular portion = 0.60.

Solution. Given:

Top width AE=1m
Base width, CD=L=0.4m T\ s . /‘*
Head of water, H=0.20 m ‘“\' TRIZIZIIIET / E 'T’
For rectangular portion, Ca1=0.62 /,...\g-,\ T . N
From 845C we have \ ¥, |
tan@ AB AEE—CD ¢ o !
2 BC H 1L >
1.0—-04 06

= 0.3 03 03 Fig. 2.12

Discharge through trapezoidal notch is given by equation
tan @

2 8 x xH
Q:§C dle XJEXH 3/2+EC & EJE 5/2

— X 60 X1xv¥2Xx981x(02),,

=3 x0.62x0.4x V2X981x(0.2)%? +15
=0.06549 +0.02535 =0.09084 m3/s=90.84 litres/s. Ans

Discharge Over A Stepped Notch:-
A stepped notch is a combination of rectangular notches. The discharge
through 'stepped notch is equal to the sum of the discharges' through the

different rectangular notches.

Consider a stepped notch as shown in Fig.

Let H;= Height of water above the crest of notch (1).

L1 = Length of notch 1,

H2,l> and H3,L3 are corresponding values for notches 2 . D*_ L —
Ca=Co-efficient of discharge for all notches
Total discharge Q=Q1+Q2+Q3

2 Fig.2.12

3% c 2 xC 2

Q= e L "X V2g[H 13/2.H23/2]+3 ax L 2% V2g[H 23/2-H33/2]+3Cd x L 3% 29 xH
3/2

3
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Problem

Fig. 2.13

Fig. 1 shows a stepped notch. Find the discharge through the notch if Cd for

all

section = 0.62.

Solution. Given:
L1=40cm, L2 = 80 cm,

Lz =120cm

H1 =50+ 30+ 15 =95 crn,
H2=80 cm,H3=50 cm,

Ca=0.62

Total Discharge ,Q=Q1+Q2+Q3

where

2

Q1=§x C XL XV2g[H 13/2-H,3/7]

_;xﬂ.ﬁzxdll]x 2X981x

=154067cm3/s  =154.067 lit/s
2

szixﬁ' G xL X v2g[H 3/2-Hy3/?]
2 _—
_EXIII.EE ®* 80 X2 X981 x

=530141 cm3/s

=530.144 lit/s

2
Q3:§Cd »% L 3}( 1*.'% xH 33/2

2 —_—
=§>< 0.62 X 120 X2 X 981 X 30 5,

=776771 cm3/s
=776.771 lit/s
Q=Q1+Q2+Qs
=154.067+530.144+776.771
=1460.98 lit/s Ans.
Velocity Of Approach

[952/2-80%/]

[803/2-50%/2]

becces ) grTT?
¥ 5"1":::":::::-.T"
‘ ~ --- —"..-/:\__ = -
50cm; H, 1 3)
_t- ’r"l!'”’ Ha
soem 3] ™M@
8 2.y e

Velocity of approach is defined as the velocity with which the water approaches

or reaches the weir or notch before it flows over it. Thus if Va is the velocity of



approach, then an additional head ha equal

to Va? /2g due to velocity of approach, is acting on the water. flowing over the
notch. Then initial height of water over the notch becomes (H+ ha ) and final
height becomes equal to ha,' Then all the formulae are

changed taking into consideration of velocity of approach.

The velocity of approach, Va is determined by finding the discharge over the
notch or weir neglecting velocity of approach. Then dividing the -discharge-by
the cross-sectional area of the channel .on the' upstream side of the weir or

notch, the velocity of approach is obtained . Mathematically,

@
V.=Area of Channel

This velocity of approach is used to find an additional head (ha= Va? /2g
)-Again the discharge is calculated and above process is repeated for more
accurate discharge.

Discharge over arectangular weir, with velocity of approach

2
— i~ _
=3 xC G X L x 4/ 2g [(H1+ha)3/2-h33/2]

Problem:-

Water is flowing in a rectangular channel of 1 m wide and 0.75 m deep. Find
the discharge over a rectangular weir of crest length 60 cm if the head of water
over the crest of weir is

20 cm and water from channel flows over the weir. Take Cd = 0.62. Neglect
end contractions. Take

velocity of approach into consideration.

Solution. Given:

Area of channel, A = Width x depth = 1.0 x 0.75 = 0.75 m?

Length of weir, L = 60 cm = 0.6 m

Head of water, H1=20cm =0.2 m

Ca=0.62

Discharge over a rectangular weir without velocity of approach is given by



2
Q=3 CaXL X Jﬂx H 32

2
_3X0.62 X 0.6 xVZX 981X (0.2) 4,

=0.0982 m3/s

Q 0.0982
velocity of approach Va.=A= 0.75

Additional head ha=Va%/2g

=01309 2
5

=(0.1309)2/2% 9.81 = 0.0008733 m

Then discharge with velocity of approach is given by equation
2

Q=3 xC X LX *.."’2_3 [(Hi+ha)%/2-ha3/2]

-2/3x0.62 X 0.6 X V(2 X 9.81[(0.2 + 0.00087) 3/2.(0,00087)%/?]

1.098 [0.09002- .00002566]
1.098 x 0.09017
=0.09881 m3/s. Ans

Types of Weirs :-

Though there are numerous types of weirs, yet the following are important
from the subject point of view :

Narrow-crested weirs,

Broad-crested weirs,

Sharp-crested weirs,

Ogee weirs, and

Submerged or drowned weirs.

G N

Discharge over a Narrow-crested Weir :-

The weirs are generally classified according to the width of their crests into
two types. i.e.
narrow-crested weirs and broad crested weirs.

Let b = Width of the crest of the weir, and
H = Height of water above the weir crest.

If 2b is less than H,the weir is called a narrow-crested weir. But if 2b is more than
H . it is called a broad-crested weir.

A narrow-crested weir is hydraulically similar to an ordinary weir or to a
rectangular weir .Thus, the same formula for discharge over a narrow-
crested weir holds good, which we derived from an ordinary weir .



2
Q=3 X Ca.1/29 xH3/2
Where, Q = Discharge over the weir,

Cd = Coefficient of discharge,
L = Length of the weir, and

H = Height of water level above the crest of the weir.

Example A narrow-crested weir of 10metres long is discharging water under a
constant head of 400 mm. Find discharge over the weir in litresls. Assume

coefficient of discharge as 0.623.

Solution. Given: L = 10 m; H= 400 mm = 0.4 m and Ca = 0.623.We
know that the discharge over the weir,

2
Q=3 XCq L2g x H3/2

2
= 3 x0.623x10v 2 X 28 % (0.4y32

=46.55 m?/s =4655 lit/s



Discharge over a Broad-crested Weir :-

Broad-crested weir

Consider a broad-crested weir as shown in Fig. Let A and B be the
upstream and downstream ends of the weir.
Let H = Head of water on the upstream side of the weir (i.e.,, atA),

h = Head of water on the downstream side of the weir (i.e., at B),

v = Velocity of the water on the downstream side of the weir

(i.e.,, at B),
Ca = Coefficient of discharge, and
L = Length of the weir.
Q=1.71Cq .L x H32

Example A broad-crested weir 20 m long is discharging water from a
reservoir in to channel. What will be the discharge over the weir, if the head
of water on the upstream and downstream sides is 1m and 0.5 m respectively?
Take coefficient of discharge for the flow as 0.6 .

Solution. Given: L=20m; H=1m; h=0.5 m and Cq = 0.6.
We know that the discharge over the weir,
—_—
Q=CsL.h 2g(H—h)
= 0.6 x2.0x0.5xV2x981{1-0.5) m3/s
= 6x3.13=18.8 m3/s Ans.



Discharge over a Sharp-crested Weir :-

It is a special type of weir, having a sharp-crest as shown in Fig. The water
flowing over the crest comes in contact with the crest-line and then
springs up from the crest and falls as a trajectory as shown in Fig.
In a sharp-crested weir, the thickness of the weir is
kept less than half of the height of water on the weir. i.e,,
b<(H/2)
where, b = Thickness of the weir,
and H = Height of water, above the crest of the weir.

The discharge equation, for a sharp crested weir, remains the same as that of
a rectangular weir. i.e.,

-
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Fig. 2.16
Sharp-crested  weir :-

2
Q=3 X Ca.1/29 x H3/2

Where, Cq = Coefficient of discharge, and
L = Length of sharp-crested weir

Example In alaboratory experiment, water flows over a sharp-crested weir
200 mm long under a constant head of 75mm. Find the discharge over the weir
in litres/s, if Ca = 0.6.

Solution. Given: L=200mm =0.2m; H=75mm = 0.075 m and Cq4 = 0.6.

We know that the discharge over the weir,

2
Q=3 X Ca.LV28 x H32



2
_3X0.6x02xVZX 981 (0.075),,

=0.0073 m3/s =7.3 litres/s. Ans.

Discharge over an Ogee Weir :-

Itis a special type of weir, generally, used as a spillway of a dam as shown
in Fig.

, The crest of an agee weir slightly rises up from the

point A ,(i.e., crest of the sharp-crested weir) and after reaching the
maximum rise of 0.115 H (where H is the height of a water above the point A)
falls in a parabolic form as shown in Fig.

The discharge equation for an agee weir remains the same as that of a

rectangular weir. i.e.,

2
Q=3 XCa LV2g x H32
Where Ca = Co-efficient of discharge and
L= Length of an ogee weir

Fig. 2.17

Example

An ogee weir 4 metres long has 500 mm head of water. Find the discharge over
the weir, if Cqa = 0.62.

Solution. Given: L=4 m; H=500 mm = 0.5 m and C4q= 0.62.

We know that the discharge over the weir,

2
Q=3 X Ca.LV28 x H3?
2
=3 X 0.62 X 4¥-2X9.81 X (0.5)*2m3/s
= 7.323 x0.354 =2.59 m3/s= 2590 litres/s Ans

Discharge over a Submerged or Drowned Weir :-



When the water level on the downstream side of a weir is above the top surface
of weir, it is known a submerged or drowned weir as shown in Fig
The total discharge, over such a weir, is found out by splitting up the height
of water, above the sill of the weir, into two portions as discussed below:
Let Hi = Height of water on the upstream side of the weir, and

H2 =height of water on the downstream side

of the weir.

The discharge over the upper portion may be considered as a free discharge
under a head of water equal to (Hi1 @ H2). And the discharge over the lower
portion may be considered as a submerged discharge under a head of Hz . Thus

discharge over the free portion (i.e., upper portion),
2

Qi1=3 XCd IV239 x (H1-H2)3/?

Submerged weir :-

and the discharge over the submerged (i.e., lower portion),
Qz =Ca. L. H2.V2g(H ;-Hj)

.. Total discharge, Q=Q1 +Q2

Example A submerged sharp crested weir 0.8 metre high stands clear across a
channel having vertical sides and a width of 3 meters. The depth of water in the
channel of approach is 1.2 meter. And 10 meters downstream from the weir,
the depth of water is 1 meter. Determine the discharge over the weir in liters
per second. Take Cq as 0.6.

Solution. Given: L =3 mand Cd = 0.6.
From the geometry of the weir, we find that the depth

of water on the upstream side,



H1=1.25- 0.8 = 0.45 m and depth of water on the downstream side,
H2=1-0.8=0.2m
We know that the discharge over the free portion of the weir

2
0:=3 X Cd .IN29 x (H1-H2)

=E x 0.6 % 3 x (V2 X 9.81)(0.45 - 0.20), ,

=5.315x0.125 = 0.664 m3/s = 664 liters/s . (1)
and discharge over the submerged portion of the weir,
Q2=Ca. L. Ha.V2g(H 1-H2)

=0.6 x3x0.2¥52x9.81(0.45-0.2) m3/s
=0.36 x2.215 =0.797 m3/s = 797 liters/s .. (ii)
.. Total discharge: Q =Q1+ Q2=664 + 797 = 1461 liters/s Ans.

Flow over Weirs:-

An open channel is a passage through which the water flows under the force

of gravity - atmospheric pressure. Or in other words, when the free surface

of the flowing water isin contact, with the atmosphere as in the case of a canal,

a sewer or an aquaduct, the flow is said to be through an open channel. A

channel may be covered or open at the top. As a matter of fact, the flow of water

in an open channel, is not due to any pressure as in the case of pipe flow. But it

is due to the slope the bed of the channel. Thus during the construction of a

channel, a uniform slope in its bed is provided to maintain the flow of water.

Chezy's Formula for Discharge through an Open Channel :-




Sloping bed of a channel :-

Consider an open channel of uniform cross-section and bed slope as shown in
Fig.

Let

I = Length ofthe channel,

A = Area of flow,

v = Velocity of water,

p = Wetted perimeter of the cross-section, m=

f = Frictional resistance per unit area at unit velocity, and

i = Uniform slope in the bed.
A

m= P 1.(known as hydraulic mean depth a
hydraulic radious )

Discharge Q= A X v=ACY=mi
Example.
A rectangular channel is 1. 5 metres deep and 6 metres wide. Find the discharge
through channel, when it runs full. Take slope of the bed as 1 in 900 and Chezy's

constant as 50.
Solution. Given: d =1.5m; b=6 m;i=1/900 and C = 50.

We know that the area of the channel,
A=bd=6 x1.5=9 m?
and wetted perimeter, D=b +2d =6 +(2 x 1.5)=9m

A
.. Hydraulic mean depth, m=P = 1m

and the discharge through the channel,
Q = ACY=mi = 9x50¥= (1X1/900)= 15m?/s Ans.

Manning Formula for Discharge :-

Manning, after carrying out a series of experiments, deduced the following

relation for the value of C in Chezy's formula for discharge:
1

C=N*™ 16

where N is the Kutter's constant



Now we see that the velocity,

v = C ¥imi=M X m?/3X i!/?

where

M =1/N and is known as Manning's constant.
Now the discharge,

Q = Area x Velocity = A x 1/N x m? xi'/?

= A x M x m?3 x il/?



Example

An earthen channel with a 3 m wide base and side slopes 1 :1 carries water
with a depth of 1 m. The bed slope is 1in 1600. Estimate the discharge. Take
value of N in Manning's formula as 0.04.

Solution.

Given: b =3 m; Sideslopes=1:1;d=1m; i=1/1600and N =0.04.

We know that the area of flow,

A =éX(3 +5)x1 =4 m?

and wetted perimeter,
P=3+2Xv:(1)+(1)2=583 m

hydraulic mean depth m = A/P=4/5.83=0.686 m
We know that the discharge through the channel
Q = Area x Velocity = A x 1/N x m?/3 xjl/2
=4X1/0.04X0.686*3X (1/1600)'/?
=1.945 m 3/s Ans

Channels of Most Economical Cross-sections :-

A channel, which gives maximum discharge for a given cross-sectional area
and bed slope is called a channel of most economical cross-section. Or in other
words, it is a channel which involves least excavation for a designed amount of
discharge. A channel of most economical cross-section is, sometimes: also
defined as a channel which has a minimum wetted perimeter; so that there
is a minimum resistance to flow and thus resulting in a maximum discharge.
From the above definitions,

it is obvious that while deriving the condition for a channel of most
economical cross-section, the cross-sectional area is assumed tobe constant.
The relation between depth and breadth of the section is found out to give the
maximum discharge.

The conditions for maximum discharge for the following sections will be
dealt with in the succeeding pages :

1. Rectangular section,
2. Trapezoidal section, and



3. Circular section.



Condition for Maximum Discharge through a Channel of RectangularSection

A rectangular section is, usually, not provided in channels except in rocky soils
where the faces of rocks can stand vertically. Though a rectangular section is
not of

much practical importance, yet we shall discuss it for its theoretical

importance only.

Consider achannel of rectangular section as shown in Fig.

Let

i 10
b = Breadth of the channel, and R AN
d = Depth of the channel. d Em————===——=73
A=bXd e e T e e ]
Discharge Q= A xv = AC YEmi AL :

=d/2
Fig. 2.20

Hence, for maximum discharge or maximum velocity, these two conditions
(i.e., b =2d and

m = d/2) should be used for solving the problems of channels of rectangularcross-
sections.

Example

A rectangular channel has a cross-section of 8 square metres. Find its size
and discharge through the most economical section, if bed slope is 1 in 1000.
Take C = 55.

Solution. Given: A = 8 m2

i= 1/1000 = 0.001 and C = 55.

Size of the channel

Let

b = Breadth of the channel, and

d = Depth of the channel.

We know that for the most economical rectangular section,
b=2d

.. Area (A) 8=b X d=2d Xd=2d?

=b=2m

And b=2d=2 X 2=4m



Discharge through the channel

We also know that for the most economical rectangular section, hydraulic
mean depth,

m=d/2=2/2=1m

and the discharge through the channel,

Q = AC ¥mi=8x 55v= 1X0.001 m3/s

= 440 x 0.0316 = 13.9 m3/s , Ans.

Condition for Maximum Discharge through a Channel of Trapezoidal
Section :-

A trapezoidal section is always provided in the earthen channels. The side
slopes, in a channel of trapezoidal cross-section are provided, so that the soil
can stand safely. Generally, the side slope in a particular soil is decided after
conducting experiments on that soil. In a soft soil, flatter side slopes

should be provided whereas in a harder one, steeper side slopes may be
provided.

consider a channel of trapezoidal cross- section ABCD as shown in FIg.

C

Py
- —— —

le— b —=—nd =

—-%_

Let

b = Breadth of the channel at the bottom,
d = Depth of the channel and

1

n =side slope (i.e.,, 1 vertical to n horizontal)

Hence, for maximum discharge or maximum  velocity these two
(i.e, b +2nd/2 = d vn2 + 1 and m =d/2) should be used for solving



problems on channels of
trapezoidal cross-sections.

Example .

A most economical trapezoidal channel has an area of flow 3.5 m? discharge in
the channel, when running 1 metre deep. Take C = 60 and bed slope 1 in 800.
Solution. Given: A=3.5m2;d=1m; C=60andi=1/800.

We know that for the most economical trapezoidal channel the hydraulic
mean depth

m=d/2=0.5m

and discharge in the channel],

Q= A.C¥mi = 525 m3/s Ans.

Example .
A trapezoidal channel having side slopes of 1 : 1 and bed slope of 1 in 1200 is

required to carry a discharge of 1800 m3/min. Find the dimensions of the
channel for cross-section. Take Chezy's constant as 50.

Solution.

Given side slope (n)=1

(i.e. 1 vertical to n horizontal),

i= 1/1200,Q= 180m3/min = 3m3/sec

and C =50

Let b=breadth of the channel of its bottom and d= depth of the water flow.

We know that for minimum cross section the channel should be most economical
and for economical trapezoidal section half of the top width is equal to the
slopping side. i.e.

b+2nd/2=d VnZ + 1

or b = 0.828d

~ Area A=d X (b + nd) = 1.828d?

We know that in the case of a most economical trapizodial section the hydraulic
mean depth m=d/2

And discharge through the channel (Q)= A.C. ¥mi=1.866d5/2
= d°/2=3/1.866 = 1.608



Ord=121m

~ b=0.828d =0.828 X 1.21 =1 m ANS

Condition for Maximum  Velocity through a Channel of Circular
Section :-

Consider a channel 'of circular section, discharging water wunder the
atmospheric pressure shown in Fig.

Let r = Radius ofthe channel,

h = Depth of water in the channel, and

28 = Total angle (in radians) subtended at the centre by the water

From the geometry of the figure, we find that the wetted perimeter of the

channels,
p=2r@ (1)

and area of the section, through which the water is flowing,
r2sin2 6 sin2é6

A=r28. Tz =r2(f -2 ) o i)

We know that the velocity of flow in an open channel,

Q=A.C¥mi

We know that the velocity of flow in an open channel, v= cvmi

Problem: Find the maximum velocity of water in a circular channel of 500
mm radius, if the bed slope is 1 in 400. Take manning s constant as 50.

Solution:-
Given d= 500mm = 0.5morr = 0.5/2 = 0.25m, i=1/400 and M= 50

Let 2 & = total angle (in radian) subtended by the water surface at the centre of
the channel.
Now we know that for maximum velocity , the angle subtended by the water

surface at the centre of the channel.
K[
28 =257°30 orf® =128.75°=128.75X180 = 2.247rad

sin2é
% Areaof flow,A =r?(f - 2 ) =171m?



And perimeter P = 2r¢ =1.124m
~ hydraulic mean depth m=A/P =0.171/1.124 =0.152m
And velocity of water v= MXm?/3Xi %= 0.71m/s  ANS



Chapter-111

PUMPS
Centrifugal Pumps:-

The hydraulic machines which convert the mechanical energy to hydraulic
energy are called pumps. The hydraulic energy is in the form of pressure energy.
If the mechanical energy is converted, into pressure energy by means of

centrifugal force acting on the fluid, the hydraulic machine is called centrifugal

pump.

The centrifugal pump works on the principle of forced vortex flow which
means that when a certain mass of liquid is rotated by an external torque, the
rise in pressure head of the rotating liquid takes place. The rise in pressure head
at any point of the rotating liquid is proportional to the square of tangential

2 Org?r?
velocity of the liquid at that point (i.e., rise in pressure head = _Xg ﬁé‘ﬁ‘ ) . Thus
at the outlet of the impeller, where radius is more , the rise in pressure head will
be more & the liquid will be more & the liquid will be discharged at the outlet
with a high pressure head. Due to this high pressure head, the liquid can be lifted
to a high level.

Main Parts Of A Centrifugal Pump:-

The followings are the main parts of a centrifugal pump:

1. Impeller

2. Casing

3. Suction pipe with a foot valve & a strainer
4. Delivery Pipe

All the main parts of the centrifugal pump are shown in Fig 19.1

1. Impeller: The rotating part of a centrifugal pump is called impeller . It
consists of a series of backward curved vanes. The impeller is mounted on a
shaft which is connected to the shaft of an electric motor.



2. Casing: The casing of a centrifugal pump is similar to the casing of a
reaction turbine. It is an air-tight passage surrounding the impeller & is
designed in such a way that the kinetic energy of the water discharged at the
outlet of the impeller is converted into pressure energy before the water
leaves the casing & enters the delivery pipe. The following three types of the
casings are commonly adopted:

a. Volute casing as shown in Fig.19.1
b. Vortex casing as shown in Fig.19.2(a)
C. Casing with guide blades as shown in Fig.19.2(b)

a) Volute casing as shown in Fig.3.1the Volute casing, which is surrounding
the impeller. It is of spiral type in which area of flow increases gradually.
The increase in area of flow decrease velocity of flow. Decrease in velocity
increases the pressure of water flowing through casing. it has been

observed that in case of volute casing, the efficiency of pump increases.

DEUVERY
PIPE

FOOT VALVE
[/AND STRAINER

Main parts of a centrifugal pump
Fig. 3.1

b) Vortex casing. if a circular chamber is introduced between the casing and



impeller as shown in fig.3.1,the casing is known as vortex casing .by introducing
the circular chamber, loss of energy due to formation of eddies is reduced to a
considerable extent. thus efficiency of pump is more than the efficiency when

only volute casing is provided.

c) Casing with guide blades. This casing is shown in fig.3.1 in which the impeller is
surrounded by a series of guide blades mounted on a ring which is known as
diffuser. the guide vanes are designed in which a way that the water from the
impeller enters the guide vanes without stock. Also the area of guide vanes
increases, thus reducing the velocity of flow through guide vanes and
consequently increasing the pressure of water. the water from guide vanes then
passes through the surrounding casing which is in most of cases concentric with

the impeller as shown in fig.3.1.

3. suction pipe with foot-valve and a strainer: A pipe whose one end is connected
to the inlet of pump and other end dips into water in a sump is
known as suction pipe. A foot valve which is a non-return valve or one cway type
valve is fitted at lower end of suction pipe. Foot valve opens only in upward

direction. A strainer is also fitted at lower end of suction pipe.

GUIDE VANES

VORTEX
CHAMBER

IMPELLER

Jifferent type of casing

(a) VORTEX CASING (b) CASING WITH GUIDE B1 ANFS

Fig: 3.2

4. Delivery pipe: a pipe whose one end is connected to outlet of pump and other

end delivers water at a required height is known as delivery pipe.

Efficiencies of a centrifugal pump: Efficiencies of a centrifugal pump: In case of



a centrifugal pump , the power is transmitted from the shaft of the electric motor
to the shaft of the pump & then to the impeller. From the impeller, the power is
given to the water. Thus power is decreasing from the shaft of the pump to the
impeller & then to the water. The following are the important efficiencies of a

centrifugal pump:
a. Manometric efficiencies' man
b. Mechanical efficiencies'!m
c. Overall efficiencies "o
a) Manometric Efficiencies'! mn: The ratio of the manometric head to the

head imparted by the impeller to the water is known as manometric
efficiency. It is written as

Nmax = Manometric headHead imparted by impeller to water

Hm o gHm .................
Vw2u2 szuz
= 8

The impeller at the impeller of the pump is more than the power given to the
water at outlet of the pump. The ratio of the power given to water at outlet of the
pump to the power available at the impeller, is known as manometric efficiency.

WH. ow

The power given to water at outlet of the pump= 1000

Work done by impeller per second KW
The power at the impeller = 1000




b)

W % VU, KW
g 1000
WH,,
noo= 1000 _ _gHp
max w B VWZ % u,
— V.2 U;

1000

Mechanical efficiencies:-

The power at the shaft of the centrifugal pump is more than the power

available at the impeller of the pump . The ratio of the power available at the
impeller to the power at the shaft of the centrifugal pump is known as
mechanical efficiency. It is written as

m = Ppower at the impellePower at the
shaft

The power at the impeller in kW=Work done by impeller per
second/10000

Where S.P.= Shaft Power

Overall efficiencies "o

It is defined as the ratio of power output of the pump to the power input to
the pump . The power output of the pump in kW

Weignt of water lifted « Hy, WHn
= 1000 = 1000

Power input to the pump =Power supplied by the electric motor

= S.P. of the pump



Problem 3.1: The internal & external diameters of the impeller of a
centrifugal pump are 200mm & 400mm respectively. The pump is running
at 1200 r.p.m. The vane angles of the impeller at inlet & outlet are 20° & 30°
respectively. The water enters the impeller radially & velocity of flow is
constant. Determine the velocity of flow per metre sec.

Solution: Internal Dia. Of impeller,=D1=200mm=0.20m
External Dia. Of impeller ,=D2=400mm=0.40m

Speed N=1200r.p.m

Vane angle at inlet, 0 = 20°

— 0
Vane angle at outlet, ¢~ 30

Water enter s radially means, @ =90° and Vi1 =0

Velocity of flow , V=V,

Tangential velocity of impeller at inlet & outlet are,

_IID;N _I1x.20x1200

u =12.56m/s
1 60 60

u = D> N _ I1x.40x1200 _ 25.13m/ s
2 60 60

From inlet velocity triangle,

\% f1_ Vf2
tanp= ——= ——
u; 12.56

V o, =12.56tarP =12.56% tan20=4.57m/ s

f1

\% =V ., =457m/s

f2 f1

Problem 3.2: A centrifugal pump delivers water against a net head of 14.5 metres

& a design speed of 1000r.p.m .The values are back to an angle of 30° with the



periphery. The impeller diameter is 300mm & outlet width 50mm. Determine the
discharge of the pump if manometric efficiency is 95%.
Solution: Net head, Hm= 14.5m

Speed, N =1000r.p.m

—_ 0
Vane angle at outlet, ¢=30
Impeller diameter means the diameter of the impeller at outlet

D2z =300mm= 0.30m

Diameter,
Outlet width, B2 =50mm=0.05m
Manometric efficiency, man = 95¢,-0.95

4 =™:2N _ 2x.30x1000

, =15.70m/ s
Tangential velocity of impeller at outlet, 60



Now using equation

n =8Hn
max szuz
095 2:81x14.5
V., x15.70
_ 0.95x14.5

= ————" =954m/s
0.95x15.70

Refer to fig(3.3). From outlet velocity triangle, we have

VfZ
(u; Vi)

Vf2 — VfZ
(15.70-9.54) 6.16
V., =6.16x tan30° = 3.556m/ s
Discharge = Q ==n XD, xB, xV,,

tangp=

tan300 =

=71 % 0.30% 0.05% 3.556m3 /s = 0.1675m3 / s

Reciprocating Pump:-
Introduction:-

We have defined the pumps as the hydraulic machines which convert the
mechanical energy to hydraulic energy which is mainly in the form of pressure
energy. If the mechanical energy is converted into hydraulic energy (or pressure
energy) by sucking the liquid into a cylinder in which a piston is reciprocating
(moving backwards and forwards ), which exerts the thrust on the liquid &
increases its hydraulic energy (pressure energy), the pump is known as

reciprocating pump.



Main parts of a reciprocating pump:-

The following are the main parts of a reciprocating pump as shown in fig (3.4)

OELIVERY PIPE
DELIVERY VALVE
r
he / CYLINDER
CRANK
j PISTON g /(1)
/
\
/ \
t FONY
|' t Al i
< PISTONROD 1 7
n | [ sucTion vaLve o
—— SUCTION PIPE p—L=2r ~=f
SUMP LEVEL

Main parts of a reciprocating pump.
1. A cylinder with a piston, piston rod, connecting rod and a crank,

2. Suction pipe, 3. Delivery pipe,
4. Suction valve, and 5. Delivery valve.
Fig. 3.4
Discharge _through a Reciprocating _Pump: Consider a single

reciprocating pump as shown in fig ().
Let D= dia. Of the cylinder

A= C/s area of the piston or cylinder

_3P°
r= Radius of crank
N=r.p.m of the crank
L=Length of the stroke=2*r

hs = height of the axis of the cylinder from water surface in sump

ha = Height of the delivery outlet above the cylinder axis (also called

delivery head)

Volume of water delivered in one revolution or discharge of water in one

revolution

acting



= Area * Length of stroke = A*L

N

Number of revolution per second, = 60

Discharge of the pump per second , Q= Discharge in one direction x No. of
revolution per second
N ALN

x_
= AxL, 6o = 60 ooooooooooo.

pgQ="8ELE
Wt. of water delivered per second, W = 60 I .

Work done by Reciprocating Pump : Work done by the reciprocating pump per
sec. is given by the reaction as

Work done per second = Weight of water lifted per second x Total
height through which water is lifted

_ Wx(h +h)

Where (hs * hd)= Total height through which water is lifted

W= pgALN
From equation () Weight, W is given by 60

Substituting the value of W in equation () we get

Work done per second =

.QgM(h +hd)
60 s I rrrrrrrrireri
Work done per second
Power required to drive the pump, in kW 1000 =
px gx ALN(h +h,)
60x1000

pgALNG, +hy),
_ " 60,000

OO






Classification of reciprocating pumps:
The reciprocating pumps may be classified as:

1. According to the water being in contact with one side or both sides of
the piston, and

2. According to the number of cylinders provided

If the water is in contact with one side of the piston, the pump is known as
single-acting. On the other hand,

If the water is in contact with both sides of the piston, the pump is called
double tacting. Hence, classification according to the contact of water is:

I. Single-acting pump
II. Double tacting pump

According to the number of cylinder provided, the pumps are classified
as:

I.  Single cylinder pump
II. Double cylinder pump

[II. Triple cylinder pump



Fluid Kinematics

1 Branch of fluid mechanics which deals with response of fluids
in motion without considering forces and energies in them.

! The study of kinematics is often referred to as the geometry of
motion.

Flow around cylindrical object

CAR surface pressure contours
2 and streamlines



Fluid Flow

1 Rate of flow: Quantity of fluid passing through any
section in a unit time.

Quantity of fluid
time

Rate of flow =

| Type:

volume of fluid
1.Volume flow rate: =

time

_mass of fluid
time

2. Mass flow rate

_ weight of fluid
time

3.Weigh flow rate



Fluid Flow

Longitudinal Section X

! Let’s consider a pipe in which a fluid is flowing with mean velocity,V.
! Let,in unit time, t, volume of fluid (AL) passes through section X-X,

Cross Section

1.Volume flow rate: o volume of fluid _AL
time t
2. Mass flow rate = mass of fluid _ p(AL)
time t
3.Weigh flow rate - weightof fluid _ pg(AL) _y (AL)

time t

t

Units



Types of Flow

I Depending upon fluid properties
1 Ideal and Real flow
1 Incompressible and compressible

1 Depending upon properties of flow
Y Laminar and turbulent flows
X
X

Steady and unsteady flow
Uniform and Non-uniform flow



Ideal and Real flow

I Real fluid flows implies friction effects. |deal fluid flow is hypothetical;
it assumes no friction.

¥
— R B
Pipe Ideal flow  Real flow

Velocity distribution of pipe flow



Compressible and incompressible flows

1 Incompressible fluid flows assumes the fluid have constant density
while in compressible fluid flows density is variable and becomes
function of temperature and pressure.

Incompressible fluid Compressible fluid




Laminar and turbulent flow

1 The flow in laminations (layers) is
termed as laminar flow while the case
when fluid flow layers intermix with
each other is termed as turbulent flow.

(a) > ld

>
»

Laminar flow

(b) %: 'd

Turbulent flow

! Reynold’s number is used to
differentiate between laminar and
turbulent flows.

8 Transition of flow from Laminar to turbulent



Steady and Unsteady flows

1 Steady flow: It is the flow in X
which conditions of flow remains
constant w.r.t. time at a particular _ Vv
section but the condition may be
different at different sections. Longitudinal Section X
! Flow conditions: velocity, pressure, oV

—__=0=V _contt

density or cross-sectional area etc. pn

e.g., A constant discharge through
a pipe.

=

! Unsteady flow: It is the flow in
which conditions of flow changes
w.r.t. time at a particular section.

1 e.g.,A variable discharge through a oV

. — #0:=V _variable
pipe ot



Uniform and Non-uniform flow

_______________________________________ < -
" Uniform flow: It is the flow in
which conditions of flow —
remains constant from section v
to section. X
. Longitudinal Section
1 e.g., Constant discharge though Y
a constant diameter pipe " =0=V _eontt
OX
7 Non-uniform flow: It is the
flow in which conditions of flow
does not remain constant from — Y%
section to section.
1 e.g., Constant discharge through Longitudinal Section X
. . . av
variable diameter pipe Y 202V _yariable

10 OX



Describe flow condition

1 Constant discharge though non I Variable discharge though non

variable diameter pipe variable diameter pipe
X X
E—) e e i
1 : X . . X
Longitudinal Section Longitudinal Section
Steady flow !! Unsteady flow !!
Non-uniform flow !! Non-uniform flow !!

¥ ¥

Steady-non-uniform flow unsteady-non-uniform flow

11 11



Flow Combinations

Type Example

Flow at constant rate through a duct of
uniform cross-section

Steady non-uniform Flow at constant rate through a duct of
flow non-uniform cross-section (tapering pipe)

1. Steady Uniform flow

1.

Flow at varying rates through a long
straight pipe of uniform cross-section.

Unsteady non-uniform  Flow at varying rates through a duct of
flow non-uniform cross-section.

3. Unsteady Uniform flow

4,

12



One, Two and Three Dimensional Flows

1 Although in general all fluids flow three-dimensionally, with
pressures and velocities and other flow properties varying in all
directions, in many cases the greatest changes only occur in two
directions or even only in one. In these cases changes in the other
direction can be effectively ighored making analysis much more

simple.

1 Flow is one dimensional if the flow parameters (such as velocity,
pressure, depth etc.) at a given instant in time only vary in the
direction of flow and not across the cross-section

Water surface !

—

Longitudinal section of rectangular channel ¢ gss-section

Mean
velocity

Velocity profile



One, Two and Three Dimensional Flows

1 Flow is two-dimensional if it can be
assumed that the flow parameters
vary in the direction of flow and in
one direction at right angles to this
direction

parameters vary in all three directions
of flow

14 Three-dimensional flow in stilling basin



Visualization of flow Pattern

! The flow velocity is the basic description of how a fluid moves in time and
space, but in order to visualize the flow pattern it is useful to define
some other properties of the flow.These definitions correspond to various
experimental methods of visualizing fluid flow.

Flow around cylindrical object

CAR surface pressure contours
and streamlines

15



Visualization of flow Pattern

1

\\‘1

\

!
)

= -t
*
*
*
—

Streamlines around a wing shaped body Flow around a skiing athlete

16



Path line and stream line

= XA

Pathline: It is trace made by single
particle over a period of time.

Streamline show the mean
direction of a number of particles at
the same instance of time.

Character of Streamline

1. Streamlines can not cross each
other. (otherwise, the cross point
will have two tangential lines.)

2. Streamline can't be a folding line,
but a smooth curve.

3. Streamline cluster density reflects
the magnitude of velocity. (Dense
streamlines mean large velocity;
while sparse streamlines mean small
velocity.)

17

Fluid particle at 1 =1,,4
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Fluid particle at some
intermediate time

V. b,

Flow around cylindrical object



Streakline and streamtubes

N I I I S B B D B B B B B B B B B B B B B B B e B e . — m— — — — e— e— — — — — — — —

I A Streakline is the locus of l
fluid particles that have passed T
sequentially through a | Stenktie
prescribed point in the flow.

I Itis an instantaneous picture of L
the position of all particles in 8767 (.
flow that have passed through a “
given point.

1 Streamtube is an imaginary Vol
tube whose boundary
consists of streamlines.

¥ The volume flow rate must
be the same for all cross
sections of the stream tube.

18



Mean Velocity and Discharge

Longitudinal Section X Cross Section

! Let’s consider a fluid flowing with mean velocity,V, in a pipe of uniform
cross-section.Thus volume of fluid that passes through section XX in unit
time , At, becomes;

Volume of fluid = (AtV )A

volume of fluid  (AtV )A
time At
Q= AV
Similarly M = pAV
G =yAV

Volume flow rate: Q =

19



Fluid System and Control Volume

1 Fluid system refers to a specific mass of fluid within the
boundaries defined by close surface.The shape of system and so the
boundaries may change with time, as when fluid moves and deforms,
so the system containing it also moves and deforms.

1 Control volume refers to a fixed region in space, which does not
move or change shape. It is region in which fluid flow into and out.

20



Continuity

I Matter cannot be created or destroyed \
- (it is simply changed in to a different S
form of matter).

Control

T
I This principle is know as the O e
conservation of mass and we use it in the ~—
analysis of flowing fluids. m s e v el 266 S04 S
X The principle is applied to fixed An arbitrarily shaped control volume.

volumes, known as control volumes
shown in figure:

For any control volume the principle of conservation of mass says

Mass entering per unit time -Mass leaving per unit time
= Increase of mass in the control volume per unit time

21



Continuity Equation

I For steady flow there is no increase in the mass within the control
volume, so

Mass entering per unit time = Mass leaving per unit time

Derivation:
Lets consider a stream tube.

p;, VvV, and A; are mass density,

velocity and cross-sectional area at
section 1. Similarly, p,, v, and A, are

mass density, velocity and cross-
sectional area at section 2.

X According to mass conservation

= X X

d(M | A stream tube
-, - 800

p AV —p AV _(_CV) M, =p,AV,
1 11 2 2 2 M2 — p2A2V2
22



Continuity Equation

! For steady flow condition (M, )/dt=0

cv
PAV — P AV, =0= p AV, = p,AV,
M =p,AV,.=p,AV,

! Hence, for stead flow condition, mass flow rate at section 1= mass
flow rate at section 2. i.e., mass flow rate is constant.

1 Similarly G=p,0AV, =p,0AV,

I Assuming incompressible fluid, p,=p,=p
AV, = AV, ‘ Ql = Q2 ‘ Q,=Q,=0Q;=Q,

1 Therefore, according to mass conservation for steady flow of
incompressible fluids volume flow rate remains same from section

to section.
23



Hydrostatic Forces on Surfaces .

3.1/ Vertical Plan rf mer in Ligui

Consider a plane vertical surface of arbitrary shape immersed in a liquid as
shown in Fig.(3.1) :

Let, A-Total area of the Surface. hc - Distance of center of gravity( C.G)of
the area from free surface of liquid. G — Center of gravity of plane surface. P —
Center Of pressure. hp — Distance of center of pressure from free surface of
liquid.

FREE SURFACE OF LIQUID

| - b 0]
h / : =~ < ih

R CSu— ;
o
dh — L L L LLLLL

h
|
T Ge 4+ ¥ ‘l

; pe—1 ‘F.;

— 8

Fig.( 3.1)

Consider a strip of thickness (dh) and width( b) at a depth of ( h) from free
surface of liquid as shown in Fig.(3.1) :

Pressure onthestrip P=pgh

Area of the strip A = bxdh

Total Force on stripdF = p x Area=p g hx bx dh

Total Force on the whole surface F =] dF =/ p gh xb x dh

=pgJbxhxdh
[ bxhx dh=[hx dA

= Moment of surface area about the free surface of liquid.
= Area of surface x Distance of ( C.G ) from free surface .
=AXxh

F=pgAhc (3.1)
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Center of pressure (p) : Center of pressure is calculated by using the

(principle of moments ) , which states that the moment of the resultant force
about an axis is equal to the sum of moments of the components about the same
axis . ( The distance of center of pressure ( p ) from the free surface is hp ).

Moment of Force = dF x h
=pghxbxdhxh (3.2
Sum of momentum of all such forces = | p g h xb x dh xh
=pglbh2dh=pg[h?dA
=pglbh?dh =pg lo  (33)

( In which I, is moment of inertia of the surface about free surface of liquid )
But , the moment of the force F about free surface of the liquid = F x hp
Therefore, Fxhp =pgl

But,F=pgA hc

Therefore, pgAhcxhy =pglo
pgl, _ _I, (3.4)

pPgAh: Ah,

p
By the theorem of parallel axis , we have
lo=lc + A Xh?

Where Ic = Moment of Inertia of area about an axis passing through the C.G
of the area and parallel to the free surface of liquid.

Substituting I, in equation ( 3.4) , we get,

_IgtAR _ Ig
hy =57 == + he (3.5)

The center of pressure hy lies below the center of gravity of the vertical surface
hc .

/ Horizontal plane surface submerged in liquid :

Consider a plane horizontal surface immersed in a static fluid. As every point of
he surface is at the same depth from the free surface of the liquid, the pressure
will be equal on the entire surface and equal to :
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P=pgh (where h is depth of the surface )

Table ( 3.1) The moments of inertia and other geometric properties

of some important plane surfaces .

Contd...
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/ Inclined Plane surface submerged in liguid :

Consider a plane surface of arbitrary shape immersed in a liquid in such a way
that the plane of the surface makes an angle O with the free surface of the liquid

as shown in Fig.( 3.2).

Fig.( 3.2) Inclined immersed surface

Let, A total area of inclined surface , hc depth of C.G of inclined area from
free surface , hp distance of center of pressure from free surface of liquid , ©
angle made by the plane of the surface with free surface , y. distance of the C.G
of the inclined surface from O — O, y, distance of the center of pressure from

theO-0.

Consider a small strip of area dA at a depth ( h) from free surface and at a
distance y from the axis O — O as shown in Fig.( 3.2).

Force dF on the strip = p X Area of strip = p g h xdA
Total Force on the whole area, F=[dF =] p gh dA

But from Fig.(3.2), sin@ =2 =t — by
y

Ye Yp

Therefore, h=ysin ©
F=[pgxysinOxdA=pgsin©]ydA
But,[ydA=Ay:
Therefore, F =p gsin © x Axy
F=pgAh (3.6)
Force on the strip , dF=p gh dA

Sine:;,hzysine



dF =p gy sin© dA
Moment of force ( dF ) about axisO - O,
dF xy=p gysin O dA xy=p gsin Oy’ dA
Sum of moments of all such forces about O -O ,
M=]pgsinO y?dA =p gsinO [y? dA
But [y2dA =1,

Therefore , M = p g sin© I, (3.7)
Moment of the total force F , about O — O is given by : F x yp( 3.8)
Equating the two values given by equations (3.7 ) & (3.8)
FXyp=pgsinO I,

_ pgsinbl,
VoS T 4 (3.9)

: h
But, sin@ =" ,yp:—h‘“- ,and F=pgAh

Vp sinf

And o= lc + A y2, Substituting these values in eq.(3.9) , we get :

_hy p g sind .
= = + 2 X
sin® = pgah, (le+Ayz) (xsin©)
But,sin@ =he | y = —fe
Ve sin@

2 2
hp: sin“0 (|G +A—hc )

Ah, sinzo

_ Igsin?0
" Ak

+ he (3.10)

If the © = 90°, equation (3.10) becomes same as equation ( 3.5) ( vertical plane
submerged) .

/ Curved Surface Submerged in Liguid :

Consider a curved surface ( AB) , submerged in a static liquid as shown in
Fig.(3.3) . Let dA is the area of a small strip at a depth of ( h) from water surface.



WATER

SURFACE ¢ _ F
e AE
<
O— e A () O
gF NS } Ko E 4 G
dF -V\ dA cos ¢
BA AREA dA
(@) (b)
Fig.(3.3)
Then pressure (p)=pgh
Force (dF)=p xarea=p gh x dA (3.11) This force dF acts normal

to the surface , hence, total force on the curved surface should be:
F=/pghdA (3.12

By resolving the force dF in two components dF , and dFx and dFy in the x
and y directions respectively . The total force in the x and y directions , i .e , Fx
and Fy are obtained by integrating dFx and dFy, Then total force on the curved
surface is :

F=vVFZF F? (3.13)
x y
And inclination of resultant with horizontal is,
_F
tan O = . (3.14)

Resolving the force dF given by equation (3.11) in x and y directions :
dFx = dF sin© = p g h dA sin©O
dFy=dF cos © = p gh dA cos O
Total forces in the x and y directions are :
Fx=]dFx=p g/hdA sin® (3.15)
Fy=/dFy=pg/hdAcos © (3.16)
Fig.(3.3) b, shows the enlarged area dA , from this figure , i.e., A EFG:

EF=dA , FG=dAsin® , EG =dA cosO
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Thus , in Eq.(3.15) , dA sin© = FG = Vertical projection of the area dA .
Therefore , Fx force on the projected area on the vertical plane .
Thus, in Eq.(3.16) , dA cos© = EG = Horizontal projection of the area dA.

Therefore , | h dA cosO is the total volume contained between the curved
surface , extended up to free surface .

Hence, p g/ h dA cosO is the total weight supported by the curved surface , thus
Fy=pg [ hdA cos © = Weight of liquid supported by the curved surface
up to free surface of liquid.



Pressure and Its Measurement

Consider a small area dA in large mass of fluid. If the fluid is static , then the
force exerted by fluid on the area dA will always be perpendicular to the surface
dA. Let dF is the force acting on the area dA in the normal direction.

Then the ratio of Z_F is known as the pressure ( P ). Hence mathematically the
A

pressure at a point in a fluid at rest ( static ) is :

dF
P=—
dA

If the force ( F) is uniformly distributed over the area ( A ), the pressure at
any point is given by :

p=L (2.1)

= |

The unit of pressure are (1) kgf/cm? (in MKS) ( meter — kilogram — second)

(2) Newton / m? ( N/ m?) (iin Sl unit) . N/ m? is known as Pascal ( 1 bar = 100
kpa = 10° Pascal )

/| Pascal Law :

It states that the pressure or intensity of pressure at a point in a static fluid is
equal in all directions .This is proved as :

The fluid element is of very small directions, i.e, (dx,dyand ds).

4.
o ,%.,
~ 9
Petdy*l g <
Yt
| oy
A ’ c
py-Ax.1

Fig.(2.1) Forces on a fluid element .

Consider an arbitrary fluid element of wedge shape in a fluid mass at rest , as
shown in Fig.( 2.1) . Let the width of the element perpendicular to the plane of
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paper is unity and Py, Py and P; are the pressure acting on the face AB , AC and
BC respectively . Let angle ABC is © . Then the forces acting on the element are:

1. Pressure force normal to the surfaces .
2. Weight of the element in the vertical direction.

Force on the face AB = Py x area of face AB
=Pxxdyx1

Force on the face AC =Py x dx x 1

Force on the face BC =P, xds x 1

Weight of element = mass of element x g

BxAC
= (volume xp)xg :(A > x1)xpxg

YFx=10
Pxxdyx1-P,(dsx1)sin(90-©)=0
Px xdy - P, x ds x cos 6= 0
But, from Fig.(2.1), ds cos O = AB = dy
Pxxdy -P; xdy =0
Px = P:
Similarly, > Fy =0

Py x dx x 1 -pZdexlxcos(90-e)-dx_2><dz x1xpxg =0
Py x dx - Ps dssin © -d_xzd’_ xpxg=0

But, ds sin© = dx , and the element has very small , therefore the weight is
negligible ( third term) , therefore ,

Py = Ps

Therefore, Px=Py=P; (2.2)

This equation shows that the pressure at ant point in x, y and z direction is
equal .
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[ Pressure variation in a fluid at rest ( fluid static ) :

The pressure at any point in a fluid at rest is obtained by the hydrostatic
law which states that the rate of increase of pressure in a vertically
downward direction must be equal to the specific weight ( weight density )
of the fluid at the point. This is proved as :

Consider a small fluid element as shown in Fig.(2.2) .

- FREE SURFACE OF FLUID
-

Fig.( 2.2) Forces on a fluid element
Let, A A -cross — section area of element .
A Z - Height of fluid element .
P - pressure on face AB.
Z — distance of fluid element from free surface.
The forces acting on the fluid element are :

1. Pressure forceon AB =p x A A ( acting perpendicular to face AB
in the downward direction ).

2. Pressure forceonCD=(p + ‘?’BBA Z)x A A (acting perpendicular
z

to face CD vertically upward direction ).
3. Weight of fluid element =y x volume = pg (AA X AZ).

4. Pressure forces on surface BC and AD are equal and opposite.
Forequilibrium of fluid element , we have

PAA—(P+2ZAZ)AA+pg(AAXAZ)=0

VA

PAA —PAA - AZAA+pgx AAXAZ=0
Z

- PAZAA+pgxAAAZ=0
z
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IPAZ AA = p g x AA AZ

aP

07z

%=y , dp=ydz , [dp=y]dz

P=yZ (2.3)

Equation ( 2.3 ) states that the rate of increase of pressure in vertical
direction is equal to weight density ( y ) of the fluid at that point. This is

Hydrostatic Law . ( Zis called pressure head ) .
/ Absolute . Gauge . Atmospheric ., And Vacuum Pressures

The pressure on the fluid is measured in two difference systems. In one
system, it is measured above the absolute zero or complete vacuum and it is
called the absolute pressure and in other system , pressure is measured above
the atmospheric pressure and is called gauge pressure .

& A

2 R § GAUGE PRESSURE

& |~ ATMOSPHERIC

% o “PRESSURE
S TSRy S

-

*— VACUUM PRESSURE

ABSOLUTE ot
PRESSURE-! B

ABSOLUTE ZERO PRESSURE

Fig.( 2.3) Relationship between pressure.

The relationship between the absolute pressure , gauge pressure and vacuum
pressure are shown in Fig.(2.3) .

Mathematically :
Pabs. = Paim* Pgauge (2.4)
P agabs) = Patm. + Pgauge
Pg(abs) = Patm. = Pgauge( vacuum)
The values of atmospheric pressure at sea level at 15°c :

Patm. = 101.3 KN/m?( kpa) , Patm. = 10° N/m?( Pascal)
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Patm. = 76 cm Hg. , Parm. = 10 m( water ) , Pam. = 14.7 psi
Patm. = 14.7 psi . Pam. = 1lbar.

/ Measurement of pressure :

The pressure of a fluid is measured by the following devices :

1. Manometers .
2. Mechanical Gauges .
2.5.1/ Manometers :

Manometers are defined as the devices used for measuring the
pressure at a point in a fluid by balancing the column of fluid by the same or
another column of the fluid. They are classified as :

(1)simple manometers , (2) Differential manometers

2.5.2 / Simple Manometers :

A simple manometer consists of a glass tube having one of its ends
connected to a point where pressure is to be measured and other end
remains open to atmosphere. Common types of simple manometers are :

1. Piezometer. , 2. U-tube Manometer. , 3. Single Column Manometer.

1. Piezometer :

It is simple form of manometer , used for measuring gauge pressures , as
shown in Fig.(2.4)

Pa=pgh=yh N/m?(Pascal) (2.5)

Fig.(2.4) Piezometer.

2. U—tube Manometer :

It consists of glass tube bent in U- shape , one end of which is connected to
a point at which pressure is to be measured and other end remains open to
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the atmosphere as shown in Fig.( 2.5) . In this manometer , we can measure
positive pressure ( gauge pressure ) and negative pressure ( vacuum).

Let B is the point at which pressure is to be measured ( p ) . The datum
lineis A-A.

Fig.( 2.5) U- tube Manometer.

If we want to measure the pressure (p ) at point B .

There are two legs in the manometer , if there is equilibrium between two
legs ( right and left legs ) over the datum ( A—-A), i .e the pressure at each
leg over the datum are equal .

Mathematically ,
(a) For gauge pressure :
Pressure at left leg = Pressure at right leg
P+ yih1 =y2ho
P=vyh,- y1hs N/ m? (2.6)
(b) For vacuum ( negative ) pressure :
Pressure at left leg = pressure at right leg
P+yihi+y2h2=0
P=-yihi—y2h, N/m? (2.7)
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[ Differential Manometers :

Differential manometer are the devices used for measuring the difference of
pressures between between two points in a pipe or in two different pipes . A
differential manometer consists of a U — tube , containing a heavy liquid (

liquid manometer) , frequently is mercury ( Hg). Most commonly types of
differential manometers are :

1.U-tube differential manometer., 2 — Inverted U-tube
differential manometer . Fig.( 2.6) shows the differential
manometer of U-tube type.

(2)Two pipes at different levels (b) A and B are at the same level

Fig.(2.6) U-tube differential manometer .

In Fig.(2.6) (a) , let the two points A & B are at different level and also
contains liquids at different specific gravity ( S) ( sp. gr.).

Level X - X, level of equilibrium , the pressures in the left leg equal
the pressures in right leg :

patya(X+h)=ps+ysy+ymh

Ppa—pes =8y tymh—ya(x+h) (2.8)
In Fig.(2.6) (b),
Pa+ya(X+h)=ps+7ysX+ymh

PA—Ps =Y8 X+ ymh -ya (X +h) (2.9)
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2.Inverted U- tube differential manometer :

It consists of an inverted U-tube . The two ends of the tube are connected
to the points whose difference of pressure is to be measured. It is used for
measured difference of low pressure . Fig.( 2.7) shows an inverted U- tube
differential manometer connected to the two points A & B. Let the
pressure at A is more than the pressure at B.

Fig.(2.7)

Taking X —X as datum line , then,
Pressure at the left leg below the X — X = pa —1v1 h1
Pressure at the right leg below the X- X =pg — y2h2 — ym h
Pressure at the left leg = pressure at the right leg
Pa—vyihi=ps—y2h2—ymh
Pa- pg=1vyihi—y2h2—ymh (2.10)
1.7 / Inclined Single column Manometer :

Fig.( 2.8) shows the inclined single column manometer.This
manometer is more sensitive . Due to inclination the distance moved by
the heavy liquid in the right side will be more.

Fig.(2.8) Inclined manometer

Let L — length of heavy liquid moved in right side from X — X
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O - inclination of right leg with horizontal.

h2 - vertical rise of heavy liquid in right leg from X — X

(Lsin©)
Pa=7y2h2 -y1hs (but ho=L sin© )
Pa =y2LsIiNnO - y1hs (2.11)

2.8/ Micromanometer :

It is used for determine small differences in pressure .With two gage
liquids , immiscible in each other and in the fluid to be measured , a large
gage difference R, as shown in Fig.(2.9) can be produced for a small
pressure difference. The heaver gage liquid fills the lower U-tube up to
O - Othen the lighter gage liquid is added to both sides, filling the larger
reservoir upto 1 — 1. The gas or liquid in the system fills the space above
1-1.When the pressure at C is slightly greater than at D, the  menisci
move as indicated in Fig.(2.9) . The volume of liquid displaced in each
reservoir equals the displacement in the U —tube , thus,

¥
e D .
— ]»- W — T
l ” [ k
AJ ,vl A) ‘ 1
X‘FL m =k 3= %-
I e 2 ST
A= —
4 |
! R |
== 3 S B B
|
Y

Fig.(2.9) Micromanometer

Ay, A=R a , Ay= Ra
2 24

In which , A is area of reservoir , a is area of U — tube .

The manometer equation may be written starting at C,

P+(k +Ay)y +(k-Ay+R)y —Ry—-(k _R+AYy)y -
c 1 1 2 2 2 3 2 2 2
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(ki—Ay)yi =po

In which y1, v2, y3 are the specific weights . Simplifying and
substituting for Ay gives :

pC—pD=R[73-72(1-%)-71%] (212)

The quantity in bracket is a constant for specified gage and fluids , hence,
the pressure difference is directly proportional to R .

1.8/ Bourdon Gage ( Mechanical ) :

The bourdon pressure gage as shown in Fig.( 2.10) is typical of the
devices used for measuring gage pressure .

The bourdon gage (shown schematically) in Fig.(2.11) . In the gage , a
bent tube ( A) of elliptical cross section is held rigidly at ( B ) and its free
end is connected to a pointer (C ) by alink ( D) . When pressure is

admitted to the tube , its cross section tends to become circular , causing
thetube to straighten and move the pointer to the right over the
graduated scale .

iy B0

1
10000

/
AN
] 4

it %060 :‘
) .—'IM
30000~—

Fig.( 2.10) typical of Bourdon gage



Fig.(2.11) Schematically shown of Bourdon gage

The pointer rests at zero on the scale , when the gauge is disconnected ,
in this condition the pressure inside and outside of the tube are the same.



CHAPTER 2

Properties of Fluids

In this chapter we discuss a number of fundamental properties of fluids. An
understanding of these properties is essential for us to apply basic principles
of fluid mechanics to the solution of practical problems.

2.1 DISTINCTION BETWEEN A SOLID AND A FLUID

The molecules of a solid are usually closer together than those of a fluid. The
attractive forces between the molecules of a solid are so large that a solid tends
to retain its shape. This is not the case for a fluid, where the attractive forces be-
tween the molecules are smaller. An ideal elastic solid will deform under load
and, once the load is removed, will return to its original state. Some solids are
plastic. These deform under the action of a sufficient load and deformation con-
tinues as long as a load is applied, providing the material does not rupture. De-
formation ceases when the load is removed, but the plastic solid does not return
to its original state.

The intermolecular cohesive forces in a fluid are not great enough to hold
the various elements of the fluid together. Hence a fluid will flow under the ac-
tion of the slightest stress and flow will continue as long as the stress is present.

2.2 DISTINCTION BETWEEN A GAS AND A LIQUID

A fluid may be either a gas or a liquid. The molecules of a gas are much farther
apart than those of a liquid. Hence a gas is very compressible, and when all ex-
ternal pressure is removed, it tends to expand indefinitely. A gas is therefore in
equilibrium only when it is completely enclosed. A liquid is relatively incom-
pressible, and if all pressure, except that of its own vapor pressure, is removed,
the cohesion between molecules holds them together, so that the liquid does not
expand indefinitely. Therefore a liquid may have a free surface, i.e., a surface
from which all pressure is removed, except that of its own vapor.

A vapor is a gas whose temperature and pressure are such that it is very
near the liquid phase. Thus steam is considered a vapor because its state is

13
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CHAPTER 2: Properties of Fluids

normally not far from that of water. A gas may be defined as a highly super-
heated vapor; that is, its state is far removed from the liquid phase. Thus air is
considered a gas because its state is normally very far from that of liquid air.

The volume of a gas or vapor is greatly affected by changes in pressure or
temperature or both. It is usually necessary, therefore, to take account of
changes in volume and temperature in dealing with gases or vapors. Whenever
significant temperature or phase changes are involved in dealing with vapors
and gases, the subject is largely dependent on heat phenomena (thermodynam-
ics). Thus fluid mechanics and thermodynamics are interrelated.

2.3 DENSITY, SPECIFIC WEIGHT, SPECIFIC VOLUME,

AND SPECIFIC GRAVITY

The density p (rho),! or more strictly, mass density, of a fluid is its mass per unit
volume, while the specific weight v (gamma) is its weight per unit volume. In the
British Gravitational (BG) system (Sec. 1.5) density p will be in slugs per cubic
foot (kg/m® in SI units), which can also be expressed as units of lb-sec?/ft*
(N-s*m* in SI units) (Sec. 1.5 and inside covers).

Specific weight y represents the force exerted by gravity on a unit volume
of fluid, and therefore must have the units of force per unit volume, such as
pounds per cubic foot (N/m? in SI units).

Density and specific weight of a fluid are related as:

p=- or y=pg (2.1)

Y
8

Since the physical equations are dimensionally homogeneous, the dimen-
sions of density are

DI ‘ ; dimensions of y  Ib/ft®  Ib-sec? mass slugs
imensions of p = —; . = = = =
P dimensions of g ft/sec’ ft* volume ft?
In ST units
. . dimensions of y N/m? N-s? mass kg
Dimensions of p = — : = > = = = —
dimensions of g m/s m volume m

Note that density p is absolute, since it depends on mass, which is indepen-
dent of location. Specific weight y, on the other hand, is not absolute, since it de-
pends on the value of the gravitational acceleration g, which varies with loca-
tion, primarily latitude and elevation above mean sea level.

Densities and specific weights of fluids vary with temperature. Appendix A
provides commonly needed temperature variations of these quantities for water

I The names of Greek letters are given in the List of Symbols on page xix.
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and air. It also contains densities and specific weights of common gases at stan-
dard atmospheric pressure and temperature. We shall discuss the specific weight
of liquids further in Sec. 2.6.

Specific volume v is the volume occupied by a unit mass of fluid.> We com-
monly apply it to gases, and usually express it in cubic feet per slug (m¥kg in
SI units). Specific volume is the reciprocal of density. Thus

v = (2.2)

1
p
Specific gravity s of a liquid is the dimensionless ratio

Pliquid

Shquld Pwater at standard temperature
Physicists use 4°C (39.2°F) as the standard, but engineers often use 60°F
(15.56°C). In the metric system the density of water at 4°C is 1.00 g/cm® (or
1.00 g/mL),? equivalent to 1000 kg/m?, and hence the specific gravity (which is
dimensionless) of a liquid has the same numerical value as its density expressed
in g/mL or Mg/m3. Appendix A contains information on specific gravities and
densities of various liquids at standard atmospheric pressure.

The specific gravity of a gas is the ratio of its density to that of either hy-
drogen or air at some specified temperature and pressure, but there is no gen-
eral agreement on these standards, and so we must explicitly state them in any
given case.

Since the density of a fluid varies with temperature, we must determine
and specify specific gravities at particular temperatures.

SAMPLE PROBLEM 2.1 The specific weight of water at ordinary pressure and
temperature is 62.4 1b/ft’. The specific gravity of mercury is 13.56. Compute the
density of water and the specific weight and density of mercury.

Solution
YVwater 62.4 1b/ft3 ;
= = = 1.938 slugs/ft ANS
Prater 8 32.2 ft/sec? SHes
Vmercury = SmercuryYwater = 13.56(62.4) = 846 b/t ANS

Prmereury = SmereunyPuater = 13.56(1.938) = 26.3 slugs/f®  ANS

% Note that in this book we use a “rounded” lower case v (vee), to help distinguish it
from a capital V and from the Greek v (nu).
3 One cubic centimeter (cm?) is equivalent to one milliliter (mL).
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SAMPLE PROBLEM 2.2 The specific weight of water at ordinary pressure and
temperature is 9.81 kN/m?>. The specific gravity of mercury is 13.56. Compute the
density of water and the specific weight and density of mercury.

Solution

9.81 kN/m?
= ——— = 1.00 Mg/m’
Puater 9.81 m/s? gm

'Ymercury = Smercury'}’water = 13'56(9'81)

1.00 g/mL ANS

133.0kN/m*>  ANS
13.56 Mg/m®>  ANS

= SmercuryPwater — 1356(100)

Pmercury

EXERCISES

2.3.1 If the specific weight of a liquid is 52 Ib/ft’, what is its density?

2.3.2 If the specific weight of a liquid is 8.1 kN/m®, what is its density?

2.3.3 If the specific volume of a gas is 375 ft¥slug, what is its specific weight in Ib/ft>?
2.3.4 If the specific volume of a gas is 0.70 m¥kg, what is its specific weight in N/m>?

2.3.5 A certain gas weighs 16.0 N/m? at a certain temperature and pressure. What are
the values of its density, specific volume, and specific gravity relative to air
weighing 12.0 N/m>?

2.3.6 The specific weight of glycerin is 78.6 Ib/ft>. Compute its density and specific
gravity. What is its specific weight in kN/m*?

2.3.7 If a certain gasoline weighs 43 Ib/ft®, what are the values of its density, specific
volume, and specific gravity relative to water at 60°F? Use Appendix A.

2.4 COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS

Fluid mechanics deals with both incompressible and compressible fluids, that
is, with liquids and gases of either constant or variable density. Although there
is no such thing in reality as an incompressible fluid, we use this term where
the change in density with pressure is so small as to be negligible. This is usually
the case with liquids. We may also consider gases to be incompressible when the
pressure variation is small compared with the absolute pressure.

Ordinarily we consider liquids to be incompressible fluids, yet sound
waves, which are really pressure waves, travel through them. This is evidence of
the elasticity of liquids. In problems involving water hammer (Sec. 12.6) we
must consider the compressibility of the liquid.

The flow of air in a ventilating system is a case where we may treat a gas as
incompressible, for the pressure variation is so small that the change in density
is of no importance. But for a gas or steam flowing at high velocity through a
long pipeline, the drop in pressure may be so great that we cannot ignore the
change in density. For an airplane flying at speeds below 250 mph (100 m/s), we
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may consider the air to be of constant density. But as an object moving through
the air approaches the velocity of sound, which is of the order of 760 mph
(1200 km/h) depending on temperature, the pressure and density of the air ad-
jacent to the body become materially different from those of the air at some dis-
tance away, and we must then treat the air as a compressible fluid (Chap. 13).

2.5 COMPRESSIBILITY OF LIQUIDS

The compressibility (change in volume due to change in pressure) of a liquid is
inversely proportional to its volume modulus of elasticity, also known as the
bulk modulus. This modulus is defined as

dp v
E = —p2 = =
v Y <dv>dp

where v = specific volume and p = pressure. As v/dv is a dimensionless ratio,
the units of £, and p are identical. The bulk modulus is analogous to the modu-
lus of elasticity for solids; however, for fluids it is defined on a volume basis
rather than in terms of the familiar one-dimensional stress—strain relation for
solid bodies.

In most engineering problems, the bulk modulus at or near atmospheric
pressure is the one of interest. The bulk modulus is a property of the fluid and
for liquids is a function of temperature and pressure. A few values of the bulk
modulus for water are given in Table 2.1. At any temperature we see that the
value of E, increases continuously with pressure, but at any one pressure the
value of E, is a maximum at about 120°F (50°C). Thus water has a minimum
compressibility at about 120°F (50°C).

Note that we often specify applied pressures, such as those in Table 2.1, in
absolute terms, because atmospheric pressure varies. The units psia or kN/m?
abs indicate absolute pressure, which is the actual pressure on the fluid, relative

TABLE 2.1 Bulk modulus of water E,, psi¢

Temperature, °F

Pressure, psia 32° 68° 120° 200° 300°
15 293,000 320,000 333,000 308,000
1,500 300,000 330,000 342,000 319,000 248,000
4,500 317,000 348,000 362,000 338,000 271,000
15,000 380,000 410,000 426,000 405,000 350,000

@ These values can be transformed to meganewtons per square meter by multiplying
them by 0.006895. The values in the first line are for conditions close to normal
atmospheric pressure; for a more complete set of values at normal atmospheric
pressure, see Table A.1 in Appendix A. The five temperatures are equal to 0, 20, 48.9,
93.3, and 148.9°C, respectively.
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to absolute zero. The standard atmospheric pressure at sea level is about
14.7 psia or 101.3 kN/m?* abs (1013 mb abs) (see Sec. 2.9 and Table A.3). Bars
and millibars were previously used in metric systems to express pressure; 1 mb
= 100 N/m?. We measure most pressures relative to the atmosphere, and call
them gage pressures. This is explained more fully in Sec. 3.4.

The volume modulus of mild steel is about 26,000,000 psi (170000 MN/m?).
Taking a typical value for the volume modulus of cold water to be 320,000 psi
(2200 MN/m?), we see that water is about 80 times as compressible as steel. The
compressibility of liquids covers a wide range. Mercury, for example, is approx-
imately 8% as compressible as water, while the compressibility of nitric acid is
nearly six times greater than that of water.

In Table 2.1 we see that at any one temperature the bulk modulus of water
does not vary a great deal for a moderate range in pressure. By rearranging the
definition of E,, as an approximation we may use for the case of a fixed mass of
liquid at constant temperature

Av Ap
. = E, (2.3a)
Uy — Uy P2 — D
~ 2.3b
or ., i (230)

where E, is the mean value of the modulus for the pressure range and the sub-
scripts 1 and 2 refer to the before and after conditions.

Assuming E, to have a value of 320,000 psi, we see that increasing the pres-
sure of water by 1000 psi will compress it only 335, or 0.3%, of its original volume.
Therefore we find that the usual assumption regarding water as being incom-
pressible is justified.

SAMPLE PROBLEM 2.3 At a depth of 8 km in the ocean the pressure is
81.8 MPa. Assume that the specific weight of seawater at the surface is
10.05 kN/m® and that the average volume modulus is 2.34 x 10° N/m? for that
pressure range. (a) What will be the change in specific volume between that at the
surface and at that depth? (b) What will be the specific volume at that depth?
(c) What will be the specific weight at that depth?

Solution

11 ¥, = 10.05 kN/m®

g Sea water

J P, = 81.8 MPa
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(@) Eq.(22): v, = lp, = gly, = 9.81/10050 = 0.000976 m¥kg
Eq. (2.3a): Av = —0.000976(81.8 x 10° — 0)/(2.34 x 10°)
— —341x10°mYkg  ANS
(b) Eq.(2.3b): v, = v, + Av = 0.000942m¥kg  ANS

() v, = g/, = 9.81/0.000942 = 10410 N/m* ANS

EXERCISES

2.5.1 To two significant figures what is the bulk modulus of water in MN/m? at 50°C
under a pressure of 30 MN/m?? Use Table 2.1.

2.5.2 At normal atmospheric conditions, approximately what pressure in psi must be
applied to water to reduce its volume by 2% ? Use Table 2.1.

2.5.3 Water in a hydraulic press is subjected to a pressure of 4500 psia at 68°F. If the
initial pressure is 15 psia, approximately what will be the percentage decrease in
specific volume? Use Table 2.1.

2.5.4 Atnormal atmospheric conditions, approximately what pressure in MPa must be
applied to water to reduce its volume by 3%?

2.5.5 A rigid cylinder, inside diameter 15 mm, contains a column of water 500 mm long.
What will the column length be if a force of 2 kN is applied to its end by a
frictionless plunger? Assume no leakage.

2 kN

!

Rigid
500 mm Water | | Water L,

Figure X2.5.5

2.6 SPECIFIC WEIGHT OF LIQUIDS

The specific weights y of some common liquids at 68°F (20°C) and standard sea-
level atmospheric pressure* with g = 32.2 ft/sec® (9.81 m/s®) are given in Table
2.2. The specific weight of a liquid varies only slightly with pressure, depending
on the bulk modulus of the liquid (Sec. 2.5); it also depends on temperature,
and the variation may be considerable. Since specific weight vy is equal to pg, the

4See Secs. 2.9 and 3.5.



20 CHAPTER 2: Properties of Fluids

TABLE 2.2 Specific weights ¥ of common liquids at
68°F (20°C), 14.7 psia (1013 mb abs) with g = 32.2

ft/sec? (9.81 m/s’)
b/t kN/m?

Carbon tetrachloride 99.4 15.6
Ethyl alcohol 49.3 7.76
Gasoline 42 6.6
Glycerin 78.7 12.3
Kerosene 50 7.9
Motor oil 54 8.5
Seawater 63.9 10.03
Water 62.3 9.79

specific weight of a fluid depends on the local value of the acceleration of gravity
in addition to the variations with temperature and pressure. The variation of the
specific weight of water with temperature and pressure, where g = 32.2 ft/sec?
(9.81 m/s?), is shown in Fig. 2.1. The presence of dissolved air, salts in solution,
and suspended matter will increase these values a very slight amount. Ordinarily

Temperature, °C

0 10 20 30 40 50 60 70 80
63.2 [T I T T T T T T T
63.0 — —=9.90
62.8
9.85
62.6
o 62.4 9.80 %
2 622 2
= -
75 =
£ 620 975 2
S 618 2
e 970 3
‘é, 61.6 §
2 3
61.4 9.65
61.2
9.60
61.0
60.8 9.55
60.6 | I | I | 1 | 1 | 1 | 1 | 1
30 50 70 90 110 130 150 170
Temperature, °F
Figure 2.1

Specific weight y of pure water as a function of temperature and pressure for the
condition where g = 32.2 ft/sec? (9.81 m/s?).
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we assume ocean water to weigh 64.0 Ib/ft® (10.1 kN/m?). Unless otherwise
specified or implied by a given temperature, the value to use for water in the
problems in this book is y = 62.4 1b/ft*> (9.81 kN/m?). Under extreme conditions
the specific weight of water is quite different. For example, at S00°F (260°C) and
6000 psi (42 MN/m?) the specific weight of water is 51 Ib/ft* (8.0 kN/m®).

SAMPLE PROBLEM 2.4 A vessel contains 85L of water at 10°C a
atmospheric pressure. If the water is heated to 70°C, what will be the percenta
change in its volume? What weight of water must be removed to maintain t
volume at its original value? Use Appendix A.

Solution
V4
< ] 1A¥
70°C
Patm
Vo =85L Vo
Volume, Vo = 85L = 0.085m?
Table A.1: yio = 9.804 KN/m®, - = 9.589 kN/m’

Weight of water, W = yV = v,V = vV
ie., 9.804(0.085) kN = 9.589 ¥;; V4, = 0.08691 m®
AV = Vo — V45 = 0.08691 — 0.08500 = 0.001906 m* at 5,
AV/V, = 0.001906/0.085 = 2.24% increase ANS

Must remove (at y,): W<> = y;04V
Vo

= (9589 N/m?)(0.001906 m*) = 1827N  ANS

EXERCISES

2.6.1 Use Fig. 2.1 to find the approximate specific weight of water in Ib/ft* under the
following conditions: (@) at a temperature of 60°C under 101.3 kPa abs pressure;
(b) at 60°C under a pressure of 13.79 MPa abs.

2.6.2 Use Fig. 2.1 to find the approximate specific weight of water in kN/m?® under the
following conditions: (@) at a temperature of 160°F under normal atmospheric
pressure; (b) at 160°F under a pressure of 2000 psia.



22 CHAPTER 2: Properties of Fluids

2.6.3 A vessel contains 5.0 ft® of water at 40°F and atmospheric pressure. If the water is
heated to 80°F, what will be the percentage change in its volume? What weight
of water must be removed to maintain the volume at its original value? Use
Appendix A.

2.6.4 A cylindrical tank (diameter = 8.00 m and depth = 5.00 m) contains water at
15°C and is brimful. If the water is heated to 60°C, how much water will spill over
the edge of the tank? Assume the tank does not expand with the change in
temperature. Use Appendix A.

2.7 PROPERTY RELATIONS FOR PERFECT GASES

The various properties of a gas, listed below, are related to one another (see,
e.g., Appendix A, Tables A.2 and A.5). They differ for each gas. When the con-
ditions of most real gases are far removed from the liquid phase, these relations
closely approximate those of hypothetical perfect gases. Perfect gases, are here
(and often) defined to have constant specific heats” and to obey the perfect-gas
law,

’;’ = pv = RT (2.4)

where p = absolute pressure (Sec. 3.4)
p = density (mass per unit volume)
v = specific volume (volume per unit mass, = 1/p)
R = a gas constant, the value of which depends upon the particular gas
T = absolute temperature in degrees Rankine or Kelvin®

For air, the value of R is 1715 ft-1b/(slug-°R) or 287 N-m/(kg-K) (Appendix A,
Table A.5); making use of the definitions of a slug and a newton (Sec. 1.5), these
units are sometimes given as ft*/(sec>-°R) and m?/(s*-K), respectively. Since
v = pg, Eq. (2.4) can also be written

_ &

YT RT

from which the specific weight of any gas at any temperature and pressure can

be computed if R and g are known. Because Egs. (2.4) and (2.5) relate the vari-

ous gas properties at a particular state, they are known as equations of state and
as property relations.

In this book we shall assume that all gases are perfect. Perfect gases are

sometimes also called ideal gases. Do not confuse a perfect (ideal) gas with an
ideal fluid (Sec. 2.10).

(2.5)

3 Specific heat and other thermodynamic properties of gases are discussed in Sec. 13.1.
6 Absolute temperature is measured above absolute zero. This occurs on the
Fahrenheit scale at —459.67°F (0° Rankine) and on the Celsius scale at —273.15°C

(0 Kelvin). Except for low-temperature work, these values are usually taken as —460°F
and —273°C. Remember that no degree symbol is used with Kelvin.
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Avogadro’s law states that all gases at the same temperature and pressure
under the action of a given value of g have the same number of molecules
per unit of volume, from which it follows that the specific weight of a gas’ is
proportional to its molar mass. Thus, if M denotes molar mass (formerly called
molecular weight), v,/y, = M,/M, and, from Eq. (2.5), v,/y; = R;/R, for the
same temperature, pressure, and value of g. Hence for a perfect gas

MR, = M,R, = constant = R,

R, is known as the universal gas constant, and has a value of 49,709 ft-1b/
(slug-mol-°R) or 8312 N-m/(kg-mol-K). Rewriting the preceding equation in the
form

_ R

M

enables us to obtain any gas constant R required for Eq. (2.4) or (2.5).

For real (nonperfect) gases, the specific heats may vary over large temper-
ature ranges, and the right-hand side of Eq. (2.4) is replaced by zRT, so that
R, = MzR, where z is a compressibility factor that varies with pressure and tem-
perature. Values of z and R are given in thermodynamics texts and in hand-
books. However, for normally encountered monatomic and diatomic gases, z
varies from unity by less than 3%, so the perfect-gas idealizations yield good ap-
proximations, and Eqgs. (2.4) and (2.5) will give good results.

When various gases exist as a mixture, as in air, Dalton’s law of partial
pressures states that each gas exerts its own pressure as if the other(s) were not
present. Hence it is the partial pressure of each that we must use in Egs. (2.4)
and (2.5) (see Sample Prob. 2.5). Water vapor as it naturally occurs in the
atmosphere has a low partial pressure, so we may treat it as a perfect gas
with R = 49,709/18 = 2760 ft-1b/(slug-°R) [462 N-m/(kg-K)]. But for steam at
higher pressures this value is not applicable.

As we increase the pressure and simultaneously lower the temperature, a
gas becomes a vapor, and as gases depart more and more from the gas phase and
approach the liquid phase, the property relations become much more compli-
cated than Eq (2.4), and we must then obtain specific weight and other proper-
ties from vapor tables or charts. Such tables and charts exist for steam, ammo-
nia, sulfur dioxide, freon, and other vapors in common engineering use.

Another fundamental equation for a perfect gas is

R

pv" = pv] = constant (2.6a)
or Po_ <p> = constant (2.6b)
P1 P1

where p is absolute pressure, v (= 1/p) is specific volume, p is density, and n may
have any nonnegative value from zero to infinity, depending on the process to

"The specific weight of air (molar mass =~ 29.0) at 68°F (20°C) and 14.7 psia (1013 mb
abs) with g = 32.2 ft/sec? (9.81 m/s?) is 0.0752 Ib/ft* (11.82 N/m?).
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which the gas is subjected. Since this equation describes the change of the gas
properties from one state to another for a particular process, we call it a process
equation. If the process of change is at a constant temperature (isothermal),
n = 1. If there is no heat transfer to or from the gas, the process is adiabatic. A
frictionless (and reversible) adiabatic process is an isentropic process, for which
we denote n by k, where k = ¢,/c,, the ratio of specific heat at constant pressure
to that at constant volume.® This specific heat ratio k is also called the adiabatic
exponent. For expansion with friction # is less than k, and for compression with
friction n is greater than k. Values for k are given in Appendix A, Table A.5, and
in thermodynamics texts and handbooks. For air and diatomic gases at usual
temperatures, we can take k as 1.4.

By combining Egs. (2.4) and (2.6), we can obtain other useful relations

such as
T n—1 n—1 (n—1)/n
m-G) -G - () @)
T, ) p1 1

SAMPLE PROBLEM 2.5 If an artificial atmosphere consists of 20% oxygen and
80% nitrogen by volume, at 14.7 psia and 60°F, what are (a) the specific weight
and partial pressure of the oxygen and (b) the specific weight of the mixture?

Solution
Table A.5: R (oxygen) = 1554 ft*/(sec’-°R),
R (nitrogen) = 1773 ft*(sec’°R)
Eq. (25) 100% Oy y = ~22U4TX ) ) s bt
1554(460 + 60)
Eq. (2.5): 100% N,: vy = 322(147x144) 0.0739 Ib/ft>
1773(520)

(a) Each ft’ of mixture contains 0.2 ft* of O, and 0.8 ft’ of N,.
So for20% 0,, 7y = 0.20(0.0843) = 0.01687 Ib/ft* ANS
yRT  0.01687(1554)520

g 322
423 Ib/ft> abs = 2.94 psia  ANS

Note that this = 20%(14.7 psia).
(b) For80% N,, vy = 0.80(0.0739) = 0.0591 Ib/ft’.

Mixture: y = 0.01687 + 0.0591 = 0.0760 Ib/ft*  ANS

From Eq. (2.5), for20% O,, p =

8 Specific heat and other thermodynamic properties of gases are discussed in Sec. 13.1.
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EXERCISES

2.7.1 A gas at 60°C under a pressure of 10000 mb abs has a specific weight of 99 N/m?.
What is the value of R for the gas? What gas might this be? Refer to Appendix A,
Table A.S5.

2.7.2 A hydrogen-filled balloon of the type used in cosmic-ray studies is to be
expanded to its full size, which is a 100-ft-diameter sphere, without stress in
the wall at an altitude of 150,000 ft. If the pressure and temperature at this
altitude are 0.14 psia and —67°F respectively, find the volume of hydrogen at
14.7 psia and 60°F that should be added on the ground. Neglect the balloon’s
weight.

2.7.3 Calculate the density, specific weight, and specific volume of air at 120°F and
50 psia.

2.7.4 Calculate the density, specific weight, and specific volume of air at 50°C and
3400 mb abs.

2.7.5 If natural gas has a specific gravity of 0.6 relative to air at 14.7 psia and 68°F,
what are its specific weight and specific volume at that same pressure and
temperature. What is the value of R for the gas? Solve without using
Table A.2.

2.7.6 Given that a sample of dry air at 40°F and 14.7 psia contains 21 % oxygen and
78% nitrogen by volume. What is the partial pressure (psia) and specific weight
of each gas?

2.7.7 Prove that Eq. (2.7) follows from Egs. (2.4) and (2.6).

2.8 COMPRESSIBILITY OF PERFECT GASES

Differentiating Eq. (2.6) gives npv" 'dv + v"dp = 0. Inserting the value of dp
from this into E, = —(v/dv)dp from Sec. 2.5 yields

E, = np (2.8)

So for an isothermal process of a gas E, = p, and for an isentropic process
E, = kp.

Thus, at a pressure of 15 psia, the isothermal modulus of elasticity for a gas
is 15 psi, and for air in an isentropic process it is 1.4(15 psi) = 21 psi. Assuming
from Table 2.1 a typical value of the modulus of elasticity of cold water to be
320,000 psi, we see that air at 15 psia is 320,000/15 = 21,000 times as compress-
ible as cold water isothermally, or 320,000/21 = 15,000 times as compressible
isentropically. This emphasizes the great difference between the compressibility
of normal atmospheric air and that of water.
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SAMPLE PROBLEM 2.6 (a) Calculate the density, specific weight, and specific
volume of oxygen at 100°F and 15 psia (pounds per square inch absolute; see
Sec. 2.7). (b) What would be the temperature and pressure of this gas if we
compressed it isentropically to 40% of its original volume? (c¢) If the process
described in (b) had been isothermal, what would the temperature and pressure
have been?

Solution

¥ n=k=14 n=1
0.4V 0.4V
100°F, 15 psia Ty, s T = 100°F, p,
(a) (b) (©)

Table A.S for oxygen (O,): Molar mass M = 32.0, k = 1.40

Ry, 49,709
(a) Sec.2.7: R = v - 320

_ D 15 x 144 1b/ft?
P~ RT ~ [1553 fr1b/(slug-"R)][(460 + 100)°R]
= 0.00248 slug/ft> ANS

= 1553 ft-1b/(slug-°R) (as in Table A.5)

From Eq. (2.4):

With g = 322 ft/sec’, y = pg = 0.00248(32.2) = 0.0800 Ib/ft’  ANS

1 1
Eq. (2.2): YT o T 000248

= 403 ft’/slug ANS
(b) Isentropic compression: v, = 40%wv; = 0.4(403) = 161.1 ft¥slug
p, = 1/v, = 0.00621 slug/ft*

Eq. (2.6) withn = k: pv* = (15x144)(403)!4 = (p,x 144)(161.1)'4
p, = 541 psia ANS

From Eq. (2.4): p, = 54.1x144 psia = pRT = 0.00621(1553)(460 + T)
T, = 348°F  ANS
(c) Isothermal compression: 7, = 7, = 100°F  ANS

pv = constant: (15x144)(403) = (p, x 144)(0.4 x 403)
p, = 375 psia  ANS




2.9 Standard Atmosphere 27

SAMPLE PROBLEM 2.7 Calculate the density, specific weight, and specific
volume of chlorine gas at 25°C and pressure of 600 kN/m? abs (kilonewtons per
square meter absolute; see Sec. 2.7). Given the molar mass of chlorine

(Cl,) =171.
Solution
R, 8312
Sec. 2.7: R = 7 T 117.1 N-m/(kg-K)

» 600000 N/m”
F Eq. (2.4): = =
rom Bq G4: 2 = 27 = 1171 Nmikg K273 + 25)K]

17.20 kg/m®>  ANS
= 17.20(9.81) = 168.7N/m*> ANS

1
—— = 0.0581 mYkg ANS

Withg = 9.81m/s>, y = pg
1
p 1720

Eq. (2.2): v =

EXERCISES

2.8.1 Methane at 22 psia is compressed isothermally, and nitrogen at 16 psia is
compressed isentropically. What is the modulus of elasticity of each gas? Which
is the more compressible?

2.8.2 Methane at 140 kPa abs is compressed isothermally, and nitrogen at 100 kPa abs
is compressed isentropically. What is the modulus of elasticity of each gas? Which
is the more compressible?

2.8.3 (a) If 10 m® of nitrogen at 30°C and 125 kPa are expanded isothermally to 25 m?,
what is the resulting pressure? (b) What would the pressure and temperature
have been if the process had been isentropic? The adiabatic exponent k for
nitrogen is 1.40.

2.8.4 Helium at 25 psia and 65°F is isentropically compressed to one-fifth of its original
volume. What is its final pressure?

2.9 STANDARD ATMOSPHERE

Standard atmospheres were first adopted in the 1920s in the United States and
in Europe to satisfy a need for standardization of aircraft instruments and air-
craft performance. As knowledge of the atmosphere increased, and man’s activ-
ities in it rose to ever greater altitudes, such standards have been frequently ex-
tended and improved.

The International Civil Aviation Organization adopted its latest ICAO
Standard Atmosphere in 1964, which extends up to 32 km (105,000 ft). The
International Standards Organization adopted an ISO Standard Atmosphere to
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50 km (164,000 ft) in 1973, which incorporates the ICAO standard. The United
States has adopted the U.S. Standard Atmosphere, last revised in 1976. This in-
corporates the ICAO and ISO standards, and extends to at least 86 km
(282,000 ft or 53.4 mi); for some quantities it extends as far as 1000 km (621 mi).

Figure 2.2 graphically presents variations of temperature and pressure in
the U.S. Standard Atmosphere. In the lowest 11.02 km (36,200 ft), called the
troposphere, the temperature decreases rapidly and linearly at a lapse rate of
—6.489°C/km (—3.560°F/1000 ft). In the next layer, called the stratosphere,
about 9 km (30,000 ft) thick, the temperature remains constant at —56.5°C
(—69.7°F). Next, in the mesosphere, it increases, first slowly and then more
rapidly, to a maximum of —2.5°C (27.5°F) at an altitude around 50 km (165,000 ft
or 31 mi). Above this, in the upper part of the mesosphere known as the iono-
sphere, the temperature again decreases.

The standard absolute pressure? behaves very differently from temperature
(Fig. 2.2), decreasing quite rapidly and smoothly to almost zero at an altitude of

? Absolute pressure is discussed in Secs. 2.7 and 3.4.

Temperature, °F Absolute pressure, psia
—100 —-50 0 50 0 5 10 15 20
0 F I | I | = I | | 1300
—86.28°C, —123.30°F
86.000 km
Mesosphere
80 — -
— —250
—58.5°C at 71.802 km
70 — -
oo o
£ 501 - 150 limit - 25C, L S
[ 47.350 km J 27.5°F -
S — 1150 &
= lonosphere k=
O ... L [lonosphere . E
<
— ICAO limit — —44.5°C at 32.162 km ~— 0.868 kPa at 32.162 km
30 — - — 100
Mesosphere
20 —--- 20.063 km (-======-----------------oood Reossosssssooooooooooooo--
—56.5°C, —69.7°F — Stratosphere —50
10 == 11019km ~_ T TTTTTTTTTTTTTTToT L7777 :l_;_c')'b's"l’]'e'r'e """"
—6.489°C/km 15°C, PO 01 325 kPa
—3.560°F/1000 ft 59°F ) 14.696 psia
0 | | | | |
-100 -80 -60 —-40 -20 0 20 O 50 100 150
Temperature, °C Absolute pressure, kPa
Figure 2.2

The U.S. Standard Atmosphere, temperature, and pressure distributions.
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30 km (98,000 ft). The pressure profile was computed from the standard temper-
atures using methods of fluid statics (Sec. 3.2). The representation of the stan-
dard temperature profile by a number of linear functions of elevation (Fig. 2.2)
greatly facilitates such computations (see Sample Prob. 3.1d).

Temperature, pressure, and other variables from the ICAO Standard At-
mosphere, including density and viscosity, are tabulated together with gravita-
tional acceleration out to 30 km and 100,000 ft in Appendix A, Table A.3. Engi-
neers generally use such data in design calculations where the performance of
high-altitude aircraft is of interest. The standard atmosphere serves as a good
approximation of conditions in the atmosphere; of course the actual conditions
vary somewhat with the weather, the seasons, and the latitude.

2.10 IpEAL FLUID

An ideal fluid is usually defined as a fluid in which there is no friction, it is
inviscid (its viscosity is zero). Thus the internal forces at any section within it
are always normal to the section, even during motion. So these forces are
purely pressure forces. Although such a fluid does not exist in reality, many flu-
ids approximate frictionless flow at sufficient distances from solid boundaries,
and so we can often conveniently analyze their behaviors by assuming an ideal
fluid. As noted in Sec. 2.7, take care to not confuse an ideal fluid with a perfect
(ideal) gas.

In a real fluid, either liquid or gas, tangential or shearing forces always de-
velop whenever there is motion relative to a body, thus creating fluid friction,
because these forces oppose the motion of one particle past another. These fric-
tion forces give rise to a fluid property called viscosity.

2.11 ViscosITty

The viscosity of a fluid is a measure of its resistance to shear or angular defor-
mation. Motor oil, for example, has high viscosity and resistance to shear, is co-
hesive, and feels “sticky,” whereas gasoline has low viscosity. The friction forces
in flowing fluid result from the cohesion and momentum interchange between
molecules. Figure 2.3 indicates how the viscosities of typical fluids depend on
temperature. As the temperature increases, the viscosities of all liquids decrease,
while the viscosities of all gases increase. This is because the force of cohesion,
which diminishes with temperature, predominates with liquids, while with gases
the predominating factor is the interchange of molecules between the layers of
different velocities. Thus a rapidly-moving gas molecule shifting into a slower-
moving layer tends to speed up the latter. And a slow-moving molecule entering
a faster-moving layer tends to slow down the faster-moving layer. This molecu-
lar interchange sets up a shear, or produces a friction force between adjacent
layers. At higher temperatures molecular activity increases, so causing the vis-
cosity of gases to increase with temperature.
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Viscosity —
(absolute and kinematic)

Temperature —-

Figure 2.3
Trends in viscosity variation with temperature.

Figures A.1 and A.2 in Appendix A graphically present numerical values
of absolute and kinematic viscosities for a variety of liquids and gases, and show
how they vary with temperature.

Consider the classic case of two parallel plates (Fig. 2.4), sufficiently large
that we can neglect edge conditions, a small distance Y apart, with fluid filling
the space between. The lower plate is stationary, while the upper one moves par-
allel to it with a velocity U due to a force F corresponding to some area A of the
moving plate.

At boundaries, particles of fluid adhere to the walls, and so their velocities
are zero relative to the wall. This so-called no-slip condition occurs with all vis-
cous fluids. Thus in Fig. 2.4 the fluid velocities must be U where in contact with
the plate at the upper boundary and zero at the lower boundary. We call the
form of the velocity variation with distance between these two extremes, as de-
picted in Fig. 2.4, a velocity profile. 1f the separation distance Y is not too great,
if the velocity U is not too high, and if there is no net flow of fluid through the
space, the velocity profile will be linear, as in Fig. 2.4a. If, in addition, there is a
small amount of bulk fluid transport between the plates, as could result from
pressure-fed lubrication for example, the velocity profile becomes the sum of

—U— U —
| F,U v F, U
| |— | EY
e ; s Velocity
dy Velo_cny profile
y T profile y T =7 du
Y b= edu y| 7 Stope 7y
| e
| | | |
(a) Linear (no bulk flow) (b) Curved (bulk flow to the right)
Figure 2.4

Velocity profiles.
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the previous linear profile plus a parabolic profile (Fig. 2.4b); the parabolic
additions to (or subtractions from) the linear profile are zero at the walls (plates)
and maximum at the centerline. The behavior of the fluid is much as if it con-
sisted of a series of thin layers, each of which slips a little relative to the next.

For a large class of fluids under the conditions of Fig. 2.4a, experiments
have shown that

AU
F -
Ty

We see from similar triangles that we can replace U/Y by the velocity gradient
du/dy. If we now introduce a constant of proportionality u (mu), we can express
the shearing stress 7 (tau) between any two thin sheets of fluid by

fl U du
TEA TRy Ty (2.9)
We call Eq. (2.9) Newton’s equation of viscosity, since Sir Isaac Newton
(1642-1727) first suggested it. Although better known for his formulation of the
fundamental laws of motion and gravity and for the development of differential
calculus, Newton, an English mathematician and natural philosopher, also made
many pioneering studies in fluid mechanics. In transposed form, Eq. (2.9) de-
fines the proportionality constant

_ T
duydy

known as the coefficient of viscosity, the absolute viscosity, the dynamic vis-
cosity (since it involves force), or simply the viscosity of the fluid. We shall use
“absolute viscosity” to help differentiate it from another viscosity that we will
discuss shortly.

We noted in Sec. 2.1 that the distinction between a solid and a fluid lies in
the manner in which each can resist shearing stresses. We will clarify a further
distinction among various kinds of fluids and solids by referring to Fig. 2.5. In

" (2.10)
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the case of a solid, shear stress depends on the magnitude of the deformation;
but Eq. (2.9) shows that in many fluids the shear stress is proportional to the time
rate of (angular) deformation.

A fluid for which the constant of proportionality (i.e., the absolute viscos-
ity) does not change with rate of deformation is called a Newtonian fluid, and
this plots as a straight line in Fig. 2.5. The slope of this line is the absolute vis-
cosity, u. The ideal fluid, with no viscosity (Sec. 2.10), falls on the horizontal axis,
while the true elastic solid plots along the vertical axis. A plastic that sustains
a certain amount of stress before suffering a plastic flow corresponds to a
straight line intersecting the vertical axis at the yield stress. There are certain
non-Newtonian fluids!'? in which u varies with the rate of deformation. These
are relatively uncommon in engineering usage, so we will restrict the remainder
of this text to the common fluids that under normal conditions obey Newton’s
equation of viscosity.

In a journal bearing, lubricating fluid fills the small annular space between
a shaft and its surrounding support. This fluid layer is very similar to the layer
between the two parallel plates, except it is curved. There is another more sub-
tle difference, however. For coaxial cylinders (Fig. 2.6) with constant rotative
speed w (omega), the resisting and driving torques are equal. But because the
radii at the inner and outer walls are different, it follows that the shear stresses

10 Typical non-Newtonian fluids include paints, printer’s ink, gels and emulsions,
sludges and slurries, and certain plastics. An excellent treatment of the subject is given
by W. L. Wilkinson in NonNewtonian Fluids, Pergamon Press, New York, 1960.

T 1,
Il
\
U, = on,
(a) (b)

Figure 2.6

Velocity profile, rotating coaxial cylinders with gap completely filled with liquid.

(a) Inner cylinder rotating. (b) Outer cylinder rotating. Z is the dimension at right
angles to the plane of the sketch. Resisting torque = driving torque and 7 =« (du/dy).

du du\ 1}
ez = wemzr (G) = (G) %
2"
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and velocity gradients there must also be different (see Fig. 2.6 and equations
that accompany it). The shear stress and velocity gradient must vary continu-
ously across the gap, and so the velocity profile must curve. However, as the gap
distance Y — 0, du/dy — U/Y = constant. So, when the gap is very small, we can
assume the velocity profile to be a straight line, and we can solve problems in a
similar manner as for flat plates.

The dimensions of absolute viscosity are force per unit area divided by ve-
locity gradient. In the British Gravitational (BG) system the dimensions of ab-
solute viscosity are as follows:

- - £ 1b/ft?
dimensionsof 7 Ib/ft = lb-sec/ft?

D. : f = -
imensions of u dimensions of du/dy fps/ft

In ST units

N/m?

Dimensionsof u = ——— = N-s/m?
]

A widely used unit for viscosity in the metric system is the poise (P), named
after Jean Louis Poiseuille (1799-1869). A French anatomist, Poiseuille was one
of the first investigators of viscosity. The poise = 0.10 N-s/m”. The centipoise
(cP) (= 0.01 P = 1 mN-s/m?) is frequently a more convenient unit. It has a fur-
ther advantage in that the viscosity of water at 68.4°F is 1 cP. Thus the value of
the viscosity in centipoises is an indication of the viscosity of the fluid relative to
that of water at 68.4°F.

In many problems involving viscosity the absolute viscosity is divided by
density. This ratio defines the kinematic viscosity v (nu), so called because force
is not involved, the only dimensions being length and time, as in kinematics
(Sec. 1.1). Thus

_ M
D = =
p

(2.11)

We usually measure kinematic viscosity v in ft*sec in the BG system, and in m?%/s
in the SI. Previously, in the metric system the common units were cm?/s, also
called the stoke (St), after Sir George Stokes (1819-1903), an English physicist
and pioneering investigator of viscosity. Many found the centistoke (cSt)
(0.01 St = 10"° m?/s) a more convenient unit to work with.

An important practical distinction between the two viscosities is the
following. The absolute viscosity u of most fluids is virtually independent of pres-
sure for the range that is ordinarily encountered in engineering work; for ex-
tremely high pressures, the values are a little higher than those shown in Fig. A.1.
The kinematic viscosity v of gases, however, varies strongly with pressure be-
cause of changes in density. Therefore, if we need to determine the kinematic vis-
cosity v at a nonstandard pressure, we can look up the (pressure-independent)
value of u and calculate v from Eq. (2.11). This will require knowing the gas den-
sity, p, which, if necessary, we can calculate using Eq. (2.4).

The measurement of viscosity is described in Sec. 11.1.
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SAMPLE PROBLEM 2.8 A l-in-wide space between two horizontal plane
surfaces is filled with SAE 30 Western lubrlcatlng oil at 80°F. What force is
required to drag a very thin plate of 4- ft> area through the oil at a velocity of
20 ft/min if the plate is 0.33 in from one surface?

Solution
| |
0.33in _EiL Qil Fu=
t ~7, 20 ft/min
0.67in ’ Oil \ 4-ft2 plate
| |
Fig. A.1: w = 0.0063 Ib-sec/ft*
Eq. (2.9): 7, = 0.0063 x (20/60)/(0.33/12) = 0.0764 Ib/fe
Eq. (2.9): 7, = 0.0063 x (20/60)/(0.67/12) = 0.0394 Ib/f¢’

From Eq. (2.9): F, = 1.4 = 0.0764 x4 = 0.3051b
From Eq. (2.9): E = 1,A = 0.0394x4 = 0.158 Ib
Force = F, + F, = 04631b  ANS

SAMPLE PROBLEM 2.9 1In Fig. S2.9 oil of absolute viscosity u fills the small
gap of thickness Y. (a) Neglecting fluid stress exerted on the circular underside,
obtain an expression for the torque 7 required to rotate the truncated cone at
constant speed w. (b) What is the rate of heat generation, in joules per second,
if the oil’s absolute viscosity is 0.20 N-s/m* a = 45°, a = 45mm, b = 60 mm,
Y = 0.2mm, and the speed of rotation is 90 rpm"

Figure S2.9
Solution
d U
(a) U = or; for small gap Y, d—;t =5 = w7r
) _ du  por _ _ 2zrdy
Eq. (2.9): T = Mdy =y dA = 2xrds = -
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. B _ por 2rrdy
From Eq. (2.9): dF = tdA = Y <cosa>

_ _ 2npe _
dT = rdF Yeosa rdy; r = ytana
2rpw tan’a
dT = ———y’d
Ycosa Yy
T 2mpw tan’a f“b 3 gy y: ab [(a + b)* _a_4]
Ycosa YTy, 4 4
2ruwtan’ o
T = W[(d + b)4 - 614] ANS

(b) [(a + b)* — a*] = (0.105 m)* — (0.045m)* = 0.0001175 m*

. 1 mi
w = <90 re‘V><2” radlans>< mm) = 3rrad/s = 37s !
min rev 60 s

2 pw’ tan’ a
1 = = = — —+ 4 _ 4
Heat generation rate = power = Tw ATV cosa [(a + b)" — a”]
~ 27(0.20 N-s/m*)(3z s~ ")*(1)*[0.000 1175 m"]
4(2x10"*m) cos45°

232N-m/s = 232J/s ANS

EXERCISES

2.11.1 At 60°F what is the kinematic viscosity of the gasoline in Fig. A.2, the specific
gravity of which is 0.680? Give the answer in both BG and SI units.

2.11.2 To what temperature must the fuel oil with the higher specific gravity in
Fig. A.2 be heated in order that its kinematic viscosity may be reduced to
three times that of water at 40°F?

2.11.3 Compare the ratio of the absolute viscosities of air and water at 70°F with the
ratio of their kinematic viscosities at the same temperature and at 14.7 psia.

2.11.4 A flat plate 200 mm x 750 mm slides on oil (u = 0.85 N-s/m?) over a large plane
surface (Fig. X2.11.4). What force Fis required to drag the plate at a velocity v
of 1.2 m/s, if the thickness ¢ of the separating oil film is 0.6 mm?

Qil Plate
% ~ / F, v

Figure X2.11.4 [ 1 |

2115 Refer to Fig. X2.11.4. A flat plate 2 ft x 3 ft slides on oil (1 = 0.024 1b-sec/ft?)
over a large plane surface. What force Fis required to drag the plate at a
velocity v of 4 ft/sec, if the thickness ¢ of the separating oil film is 0.025 in?
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2.11.6

2.11.7

2.11.8

2.11.9

Properties of Fluids

A liquid has an absolute viscosity of 3.2 x 107 Ib-sec/ft’. It weighs 56 Ib/ft’.
What are its absolute and kinematic viscosities in SI units?

(a) What is the ratio of the absolute viscosity of water at a temperature of 70°F
to that of water at 200°F? (b) What is the ratio of the absolute viscosity of the
crude oil in Fig. A.1 (s = 0.925) to that of the gasoline (s = 0.680), both being
at a temperature of 60°F? (¢) In cooling from 300 to 80°F, what is the ratio of
the change of the absolute viscosity of the SAE 30 Western oil to that of the
SAE 30 Eastern oil? Refer to Appendix A.

A space 16 mm wide between two large plane surfaces is filled with SAE 30
Western lubricating oil at 35°C (Fig. X2.11.8). What force F'is required to drag
a very thin plate of 0.4 m? area between the surfaces at a speed v = 0.25 m/s
(a) if the plate is equally spaced between the two surfaces, and (b) if t = 5 mm?
Refer to Appendix A.

Figure X2.11.8

A journal bearing consists of an 80-mm shaft in an 80.4-mm sleeve 120 mm
long, the clearance space (assumed to be uniform) being filled with SAE 30
Western lubricating oil at 40°C (Fig. X2.11.9). Calculate the rate at which heat
is generated at the bearing when the shaft turns at 150 rpm. Express the answer
in kN-m/s, J/s, Btu/hr, ft-1b/sec, and hp. Refer to Appendix A.

—120 mm—

Rotating shaft,
80 mm dia

Qil film,
0.2 mm thick

Figure X2.11.9

2.11.10 In using a rotating-cylinder viscometer, a bottom correction must be applied to

account for the drag on the flat bottom of the inner cylinder. Calculate the
theoretical amount of this torque correction, neglecting centrifugal effects, for
a cylinder of diameter d, rotated at a constant angular velocity w, in a liquid of
absolute viscosity u, with a clearance Ah between the bottom of the inner
cylinder and the floor of the outer one.

2.11.11 Assuming a velocity distribution as shown in Fig. X2.11.11, which is a parabola

having its vertex 12 in from the boundary, calculate the velocity gradients for
y =0,3,6,9, and 12 in. Also calculate the shear stresses in 1b/ft? at these points
if the fluid’s absolute viscosity is 600 cP.
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Umax = 10 fps

12in

Figure X2.11.11

2.11.12 Air at 50 psia and 60°F is flowing through a pipe. Table A.2 indicates that its
kinematic viscosity » is 0.158 x 1073 ft¥/sec. (a) Why is this v value incorrect?
(b) What is the correct value?

2.12 SURFACE TENSION

Liquids have cohesion and adhesion, both of which are forms of molecular
attraction. Cohesion enables a liquid to resist tensile stress, while adhesion en-
ables it to adhere to another body.!! At the interface between a liquid and a gas,
i.e., at the liquid surface, and at the interface between two immiscible (not mix-
able) liquids, the out-of-balance attraction force between molecules forms an
imaginary surface film which exerts a tension force in the surface. This liquid
property is known as surface tension. Because this tension acts in a surface,
we compare such forces by measuring the tension force per unit length of sur-
face. When a second fluid is not specified at the interface, it is understood that
the liquid surface is in contact with air. The surface tensions of various liquids
cover a wide range, and they decrease slightly with increasing temperature. Val-
ues of the surface tension for water between the freezing and boiling points vary
from 0.00518 to 0.00404 1b/ft (0.0756 to 0.0589 N/m); Table A.1 of Appendix A
contains more typical values. Table A.4 includes values for other liquids. Capil-
larity is the property of exerting forces on fluids by fine tubes or porous media;
it is due to both cohesion and adhesion. When the cohesion is of less effect than
the adhesion, the liquid will wet a solid surface it touches and rise at the point of
contact; if cohesion predominates, the liquid surface will depress at the point of
contact. For example, capillarity makes water rise in a glass tube, while mercury
depresses below the true level, as shown in the insert in Fig. 2.7, which is drawn
to scale and reproduced actual size. We call the curved liquid surface that devel-
ops in a tube a meniscus.

A cross section through capillary rise in a tube looks like Fig. 2.8. From
free-body considerations, equating the lifting force created by surface tension to

1Tn 1877 Osborne Reynolds demonstrated that a }-in-diameter column of mercury
could withstand a tensile stress (negative pressure, below atmospheric) of 3 atm (44 psi
or 304 kPa) for a time, but that it would separate upon external jarring of the tube.
Liquid tensile stress (said to be as high as 400 atm) accounts for the rise of water in the
very small channels of xylem tissue in tall trees. For practical engineering purposes,
however, we assume liquids are incapable of resisting any direct tensile stress.
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Capillarity in clean circular glass tubes, for liquid in contact with air.
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the gravity force,

2nrocosd = nrhy

~ 2o0cos6

o (2.12)

SO

where o = surface tension (sigma) in units of force per unit length
6 = wetting angle (theta)
v = specific weight of liquid
r = radius of tube
h = capillary rise!?

12 Measurements to a meniscus are usually taken to the point on the centerline.
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We can use this expression to compute the approximate capillary rise or depres-
sion in a tube. If the tube is clean, § = 0° for water and about 140° for mercury.
Note that the meniscus (Figs. 2.7 and 2.8) lifts a small volume of liquid, near the
tube walls, in addition to the volume z7*h used in Eq. (2.12). For larger tube
diameters, with smaller capillary rise heights, this small additional volume can
become a large fraction of zr*h. So Eq. (2.12) overestimates the amount of cap-
illary rise or depression, particularly for larger diameter tubes. The curves of
Fig. 2.7 are for water or mercury in contact with air; if mercury is in contact with
water, the surface tension effect is slightly less than when in contact with air. For
tube diameters larger than } in (12 mm), capillary effects are negligible.

Surface tension effects are generally negligible in most engineering situa-
tions. However, they can be important in problems involving capillary rise, such
as in the soil water zone; without capillarity most forms of vegetable life would
perish. When we use small tubes to measure fluid properties, such as pressures,
we must take the readings while aware of the surface tension effects; a true read-
ing would occur if surface tension effects were zero. These effects are also im-
portant in hydraulic model studies when the model is small, in the breakup of
liquid jets, and in the formation of drops and bubbles. The formation of drops is
extremely complex to analyze, but is, for example, of critical concern in the de-
sign of inkjet printers, a multi-billion-dollar business.

SAMPLE PROBLEM 2.10 Water at 10°C stands in a clean glass tube of 2-mm
diameter at a height of 35 mm. What is the true static height?

Solution
Table A.1 at 10°C: v = 9804 N/m°, ¢ = 0.0742 N/m.
Sec. 2.12 for clean glass tube: 0 =0°.

20 2(0.0742 N/m)
~ yr (9804 N/m*)0.001 m

= 0.01514m = 15.14 mm
Sec.2.12:  True static height = 35.00 — 15.14 = 19.86 mm ANS

Eq. (2.12): h

EXERCISES

2.12.1 Tap water at 68°F stands in a glass tube of 0.32-in diameter at a height of 4.50 in.
What is the true static height?

2.12.2 Distilled water at 20°C stands in a glass tube of 6.0-mm diameter at a height of
18.0 mm. What is the true static height?

2.12.3 Use Eq. (2.12) to compute the capillary depression of mercury at 68°F
(6 = 140°) to be expected in a 0.05-in-diameter tube.
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2.12.4 Compute the capillary rise in mm of pure water at 10°C expected in an 0.8-mm-
diameter tube.

2.12.5 Use Eq. (2.12) to compute the capillary rise of water to be expected in a
0.28-in-diameter tube. Assume pure water at 68°F. Compare the result with
Fig. 2.7.

2.13

VAPOR PRESSURE OF LIQUIDS

All liquids tend to evaporate or vaporize, which they do by projecting molecules
into the space above their surfaces. If this is a confined space, the partial pres-
sure exerted by the molecules increases until the rate at which molecules reen-
ter the liquid is equal to the rate at which they leave. For this equilibrium condi-
tion, we call the vapor pressure the saturation pressure.

Molecular activity increases with increasing temperature and decreasing
pressure, and so the saturation pressure does the same. At any given tempera-
ture, if the pressure on the liquid surface falls below the saturation pressure, a
rapid rate of evaporation results, known as boiling. Thus we can refer to the sat-
uration pressure as the boiling pressure for a given temperature, and it is of
practical importance for liquids.!3

We call the rapid vaporization and recondensation of liquid as it briefly
passes through a region of low absolute pressure cavitation. This phenomenon
is often very damaging, and so we must avoid it; we shall discuss it in more de-
tail in Sec. 5.10.

Table 2.3 calls attention to the wide variation in saturation vapor pressure
of various liquids; Appendix A, Table A.4 contains more values. The very low
vapor pressure of mercury makes it particularly suitable for use in barometers.
Values for the vapor pressure of water at different temperatures are in Appen-
dix A, Table A.1.

TABLE 2.3 Saturation vapor pressure of selected liquids at 68°F (20°C)

psia N/m? abs mb abs
Mercury 0.000025 0.17 0.0017
Water 0.34 2340 23.4
Carbon tetrachloride 1.90 13100 131
Gasoline 8.0 55200 552

13 Values of the saturation pressure for water for temperatures from 32 to 705.4°F can
be found in J. H. Keenan, Thermodynamic Properties of Water including Vapor, Liquid
and Solid States, John Wiley & Sons, Inc., New York, 1969, and in other steam tables.
There are similar vapor tables published for ammonia, carbon dioxide, sulfur dioxide,
and other vapors of engineering interest.



2 Problems 41

SAMPLE PROBLEM 2.11 At approximately what temperature will water boil

if the elevation is 10,000 ft?

Solution

From Appendix A, Table A.3, the pressure of the standard atmosphere at
10,000-ft elevation is 10.11 psia. From Appendix A, Table A.1, the saturation
vapor pressure p, of water is 10.11 psia at about 193°F (by interpolation). Hence
the water at 10,000 ft will boil at about 193°F. ANS

Compared with the boiling temperature of 212°F at sea level, this explains why
it takes longer to cook at high elevations.

EXERCISES

2.13.1 At what pressure in millibars absolute will 70°C water boil?

2.13.2 At approximately what temperature will water boil in Mexico City (elevation

7400 ft)? Refer to Appendix A.

PROBLEMS
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2.2

23

24

2.5

If the specific weight of a gas is 12.40 N/m?,
what is its specific volume in m*/kg?

A gas sample weighs 0.108 Ib/ft® at a certain
temperature and pressure. What are the
values of its density, specific volume, and
specific gravity relative to air weighing
0.075 1b/ft*?

If a certain liquid weighs 8600 N/m’, what
are the values of its density, specific volume,
and specific gravity relative to water at
15°C? Use Appendix A.

Find the change in volume of 15.00 Ib of
water at ordinary atmospheric pressure for
the following conditions: (@) reducing the
temperature by 50°F from 200°F to 150°F;
(b) reducing the temperature by 50°F from
150°F to 100°F; (c) reducing the
temperature by S0°F from 100°F to 50°F.
Calculate each and note the trend in the
changes in volume.

Initially when 1000.00 mL of water at 10°C
are poured into a glass cylinder, the height
of the water column is 1000.0 mm. The

water and its container are heated to 70°C.

Assuming no evaporation, what then will
be the depth of the water column if the
coefficient of thermal expansion for the
glass is 3.8 x 107® mm/mm per °C?

1000.0| 1000.00 mL, 70°C
mm 10°C

Figure P2.5

2.6 Atadepth of 4 miles in the ocean the

pressure is 9520 psi. Assume that the
specific weight at the surface is 64.00 1b/ft?
and that the average volume modulus is
320,000 psi for that pressure range. (a) What
will be the change in specific volume
between that at the surface and at that
depth? (b) What will be the specific volume
at that depth? (¢) What will be the specific
weight at that depth? (d) What is the
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percentage change in the specific volume?
(e) What is the percentage change in the
specific weight?

14 9, = 64.00 Ib/ft

4 miles
Ocean

28 P2 = 9520 psia

Figure P2.6

Water at 68°F is in a long, rigid cylinder of
inside diameter 0.600 in. A plunger applies
pressure to the water. If, with zero force,
the initial length of the water column is
25.00 in, what will its length be if a force of
420 Ib is applied to the plunger. Assume no
leakage and no friction.

| 25.00in

Water

|
o

0.600 in dia
(rigid)
68°F (both)

| Ly |

Find the change in volume of 10 m® of
water for the following situations: (a) a
temperature increase from 60°C to 70°C
with constant atmospheric pressure, (b) a
pressure increase from zero to 10 MN/m?
with temperature remaining constant at
60°C, (c) a temperature decrease from 60°C
to 50°C combined with a pressure increase
of 10 MN/m”.

A heavy closed steel chamber is filled with
water at 40°F and atmospheric pressure. If
the temperature of the water and the

chamber is raised to 80°F, what will be the

Water

Figure P2.7

2.10

211

2.12

213

2.14

new pressure of the water? The coefficient
of thermal expansion of the steel is 6.6 x
10~® in/in per °F; assume the chamber is
unaffected by the water pressure. Use Table
A.1 and Fig. 2.1.

Water 40°F Water  80°F

Pso )
Steel at 80°F

Patm ‘7510
Steel at 40°F

Figure P2.9

Repeat Exer. 2.6.4 for the case where the
tank is made of a material that has a
coefficient of thermal expansion of 4.6 x
10~° mm/mm per °C.

(a) Calculate the density, specific weight,
and specific volume of oxygen at 20°C and
50 kN/m? abs. (b) If the oxygen is enclosed
in a rigid container of constant volume,
what will be the pressure if the temperature
is reduced to—100°C?

(a) If water vapor in the atmosphere has

a partial pressure of 0.50 psia and the
temperature is 90°F, what is its specific
weight? (b) If the barometer reads 14.50
psia, what is the partial pressure of the (dry)
air, and what is its specific weight? (¢) What
is the specific weight of the atmosphere (air
plus the water vapor present)?

(a) If water vapor in the atmosphere has

a partial pressure of 3500 Pa and the
temperature is 30°C, what is its specific
weight? (b) If the barometer reads 102 kPa
abs, what is the partial pressure of the (dry)
air, and what is its specific weight? (¢) What
is the specific weight of the atmosphere (air
plus the water vapor present)?

If the specific weight of water vapor in the
atmosphere is 0.00065 1b/ft* and that of the
(dry) air is 0.074 Ib/ft> when the
temperature is 70°F, (a) what are the partial
pressures of the water vapor and the dry air
in psia, (b) what is the specific weight of
the atmosphere (air and water vapor), and
(c) what is the barometric pressure in psia?
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If an artificial atmosphere consists of 20%
oxygen and 80% nitrogen by volume, at
101.32 kN/m? abs and 20°C, what are (a) the
specific weight and partial pressure of the
oxygen, (b) the specific weight and partial
pressure of the nitrogen, and (c) the specific
weight of the mixture?

When the ambient air is at 70°F, 14.7 psia,
and contains 21 % oxygen by volume,

4.5 1b of air are pumped into a scuba tank,
capacity 0.75 ft’. (a) What volume of
ambient air was compressed? (b) When
the filled tank has cooled to ambient
conditions, what is the (gage) pressure of
the air in the tank? (c) What is the partial
pressure (psia) and specific weight of the
ambient oxygen? (d) What weight of
oxygen was put in the tank? (¢) What is
the partial pressure (psia) and specific
weight of the oxygen in the tank?

(a) If 10 ft® of carbon dioxide at 50°F and 15
psia is compressed isothermally to 2 ft3,
what is the resulting pressure? (b) What
would the pressure and temperature have
been if the process had been isentropic?
The adiabatic exponent k for carbon
dioxide is 1.28.

(a) If 350 L of carbon dioxide at 20°C and
120 kN/m? abs is compressed isothermally
to 50 L, what is the resulting pressure?
(b) What would the pressure and
temperature have been if the process had
been isentropic? The isentropic exponent
k for carbon dioxide is 1.28.

Helium at 180 kN/m? abs and 20°C is
isentropically compressed to one-fifth of its
original volume. What is its final pressure?

The absolute viscosity of a certain gas is
0.0234 cP while its kinematic viscosity is
181 cSt, both measured at 1013 mb abs and
100°C. Calculate its approximate molar
mass, and suggest what gas it may be.

A hydraulic lift of the type commonly used
for greasing automobiles consists of a
10.000-in-diameter ram that slides in a
10.006-in-diameter cylinder (Fig. P2.21), the
annular space being filled with oil having a
kinematic viscosity of 0.0038 ft*/sec and
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specific gravity of 0.83. If the rate of travel
of the ram v is 0.5 fps, find the frictional
resistance, F when 6 ft of the ram is
engaged in the cylinder.

F, vl
Ram, 10.000 in dia

QOil film, 0.003 in thick

Fixed cylinder

Figure P2.21

2.22 A hydraulic lift of the type commonly used

for greasing automobiles consists of a
280.00-mm-diameter ram that slides in a
280.18-mm-diameter cylinder (similar to
Fig. P2.21), the annular space being filled
with oil having a kinematic viscosity of
0.00042 m?/s and specific gravity of 0.86. If
the rate of travel of the ram is 0.22 m/s, find
the frictional resistance when 2 m of the
ram is engaged in the cylinder.

2.23 A journal bearing consists of an 8.00-in

shaft in an 8.01-in sleeve 10 in long, the
clearance space (assumed to be uniform)
being filled with SAE 30 Eastern lubricating
oil at 100°F. Calculate the rate at which heat
is generated at the bearing when the shaft
turns at 100 rpm. Refer to Appendix A.
Express the answer in Btu/hr.

Rotating shaft,
8.00 in dia

—10in—

Fixed
sleeve

Oil film,
0.005 in thick

Figure P2.23
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Repeat Prob. 2.23 for the case where the
sleeve has a diameter of 8.50 in. Compute
as accurately as possible the velocity
gradient in the fluid at the shaft and sleeve.

A disk spins within an oil-filled enclosure,
having 2.4-mm clearance from flat surfaces
each side of the disk. The disk surface
extends from radius 12 to 86 mm. What
torque is required to drive the disk at 660
rpm if the oil’s absolute viscosity is 0.12
N-s/m??

It is desired to apply the general case of
Sample Prob. 2.9 to the extreme cases of a
journal bearing (a« = 0) and an end bearing
(@ =90°). Butwhena =0,r =tana = 0,
so T = 0; when a = 90°, contact area = o
due to b, so T = . Therefore devise an
alternative general derivation that will also
provide solutions to these two extreme
cases.

Some free air at standard sea-level pressure
(101.33 kPa abs) and 20°C has been
compressed. Its pressure is now 200 kPa abs
and its temperature is 20°C. Table A.2
indicates that its kinematic viscosity v is

15 x 107 m?/s. (a) Why is this v incorrect?
(b) What is the correct value?

Some free air at standard sea-level pressure
(101.33 kPa abs) and 20°C has been
compressed isentropically. Its pressure is
now 194.5 kPa abs and its temperature is

2.29

2.30

2.31

2.32

2.33

2.34

80°C. Table A.2 indicates that its kinematic
viscosity v is 20.9 x 107° m?%s. (a) Why is this
v incorrect? (b) What is the correct value?
(c) What would the correct value be if the
compression were isothermal instead?

Pure water at 50°F stands in a glass tube of
0.04-in diameter at a height of 6.78 in.
Compute the true static height.

(a) Derive an expression for capillary rise
(or depression) between two vertical
parallel plates. (b) How much would you
expect 10°C water to rise (in mm) if the
clean glass plates are separated by 1.2 mm?

By how much does the pressure inside a
2-mm-diameter air bubble in 15°C water
exceed the pressure in the surrounding
water?

Determine the excess pressure inside an
0.5-in-diameter soap bubble floating in air,
given the surface tension of the soap
solution is 0.0035 1b/ft.

Water at 170°F in a beaker is placed within
an airtight container. Air is gradually
pumped out of the container. What
reduction below standard atmospheric
pressure of 14.7 psia must be achieved
before the water boils?

At approximately what temperature will
water boil on top of Mount Kilimanjaro
(elevation 5895 m)? Refer to Appendix A.



